用户名: 密码: 验证码:
Exosomal Hsp70 mediates immunosuppressive activity of the myeloid-derived suppressor cells via phosphorylation of Stat3
详细信息    查看全文
  • 作者:Jianjun Diao (1)
    Xue Yang (2)
    Xuedong Song (2)
    Shiyou Chen (1)
    Yunfeng He (1)
    Qingsong Wang (1)
    Gang Chen (1)
    Chunli Luo (2)
    Xiaohou Wu (1)
    Yao Zhang (1)

    1. Department of Urology
    ; The First Affiliated Hospital ; Chongqing Medical University ; Yi Xue Yuan Road ; Chongqing ; People鈥檚 Republic of China
    2. The Key Laboratory of Diagnostics Medicine Designated by the Ministry of Education
    ; Chongqing Medical University ; Chongqing ; People鈥檚 Republic of China
  • 关键词:Exosomal Hsp70 ; Myeloid ; derived suppressor cells ; TLR2 ; MyD88 ; p ; Stat3 ; ARG ; 1 ; iNOS
  • 刊名:Medical Oncology
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:32
  • 期:2
  • 全文大小:1,053 KB
  • 参考文献:1. Ljungberg B, Cowan NC, Hanbury DC, Hora M, Kuczyk MA, Merseburger AS, Patard JJ, Mulders PF, Sinescu IC. European association of urology guideline group. EAU guidelines on renal cell carcinoma: the update. Eur Urol. 2010;58:398鈥?06. CrossRef
    2. Staehler M, Rohrmann K, Bachmann A, Zaak D, Stief CG, Siebels M. Therapeutic approaches in metastatic renal cell carcinoma. BJU Int. 2005;95(8):1153鈥?1.
    3. Nagaraj S, Youn JI, Gabrilovich DI. Reciprocal relationship between myeloid-derived suppressor cells and T cells. J Immunol. 2013;191(1):17鈥?3. CrossRef
    4. Ostrand-Rosenberg S, Sinha P, Beury DW, Clements VK. Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin Cancer Biol. 2012;22(4):275鈥?1. CrossRef
    5. Gantt S, Gervassi A, Jaspan H, Horton H. The role of myeloid-derived suppressor cells in immune ontogeny. Front Immunol. 2014;13(5):387.
    6. Ostrand-Rosenberg S. Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunol Immunother. 2010;59(10):1593鈥?00. CrossRef
    7. Dugast AS, Haudebourg T, Coulon F, Heslan M, Haspot F, Poirier N, Vuillefroy de Silly R, Usal C, Smit H, Martinet B, Thebault P, Renaudin K, Vanhove B. Myeloid-derived suppressor cells accumulate in kidney allograft tolerance and specifically suppress effector T cell expansion. J Immunol. 2008;180(12):7898鈥?06. CrossRef
    8. Wesolowski R, Markowitz J, Carson WE. Myeloid derived suppressor cells鈥攁 new therapeutic target in the treatment of cancer. J Immunother Cancer. 2013;15(1):10. CrossRef
    9. Tu S, Bhagat G, Cui G, Takaishi S, Kurt-Jones EA, Rickman B, Betz KS, Penz-Oesterreicher M, Bjorkdahl O, Fox JG, Wang TC. Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell. 2008;14(5):408鈥?9. CrossRef
    10. Valenti R, Huber V, Iero M, Filipazzi P, Parmiani G, Rivoltini L. Tumor-released microvesicles as vehicles of immunosuppression. Cancer Res. 2007;67(7):2912鈥?. CrossRef
    11. Becker JC. Tumor-educated myeloid cells: impact the micro- and macroenvironment. Exp Dermatol. 2014;23(3):157鈥?. CrossRef
    12. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29(4):341鈥?. CrossRef
    13. Altevogt P, Bretz NP, Ridinger J, Utikal J, Umansky V. Novel insights into exosome-induced, tumor-associated inflammation and immunomodulation. Semin Cancer Biol. 2014. pii: S1044-579X (14)00056-X.
    14. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes. Cancer Res. 2006;66(18):9290鈥?. CrossRef
    15. Yu S, Liu C, Su K, Wang J, Liu Y, Zhang L, Li C, Cong Y, Kimberly R, Grizzle WE, Falkson C, Zhang HG. Tumor exosomes inhibit differentiation of bone marrow dendritic cells. J Immunol. 2007;178:6867鈥?5. CrossRef
    16. Lamparski HG, Metha-Damani A, Yao JY, Patel S, Hsu DH, Ruegg C, Le Pecq JB. Production and characterization of clinical grade exosomes derived from dendritic cells. J Immunol Methods. 2002;270:211鈥?6. CrossRef
    17. Xiang X, Poliakov A, Liu C, Liu Y, Deng ZB, Wang J, Cheng Z, Shah SV, Wang GJ, Zhang L, Grizzle WE, Mobley J, Zhang HG. Induction of myeloid-derived suppressor cells by tumor exosomes. Int J Cancer. 2009;124(11):2621鈥?3. CrossRef
    18. Criddle DN, Madeira SV, Soares de Moura R. Endothelium-dependent and -independent vasodilator effects of eugenol in the rat mesenteric vascular bed. J Pharm Pharmacol. 2003;55:359鈥?5. CrossRef
    19. Keller S, Sanderson MP, Stoeck A, Altevogt P. Exosomes: from biogenesis and secretion to biological function. Immunol Lett. 2006;107:102鈥?. CrossRef
    20. Reid G, Kirschner MB, van Zandwijk N. Review circulating microRNAs: association with disease and potential use as biomarkers. Crit Rev Oncol Hematol. 2011;80:193鈥?08. CrossRef
    21. Calderwood SK, Khaleque MA, Sawyer DB, Ciocca DR. Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci. 2006;31(3):164鈥?2. CrossRef
    22. Singh-Jasuja H, Scherer HU, Hilf N, Arnold-Schild D, Rammensee HG, Toes RE, Schild H. The heat shock protein gp96 induces maturation of dendritic cells and down-regulation of its receptor. Eur J Immunol. 30(8):2211鈥?.
    23. Kingston AE, Hicks CA, Colston MJ, Billingham ME. A 71-kD heat shock protein (hsp) from mycobacterium tuberculosis has modulatory effects on experimental rat arthritis. Clin Exp Immunol. 1996;103(1):77鈥?2. CrossRef
    24. Elias D, Markovits D, Reshef T, van der Zee R, Cohen IR. Induction and therapy of autoimmune diabetes in the non-obese diabetic (NOD/Lt) mouse by a 65-kDa heat shock protein. Proc Natl Acad Sci. 1990;87(4):1576鈥?0. CrossRef
    25. Xiang X, Liu Y, Zhuang X, Zhang S, Michalek S, Taylor DD, Grizzle W, Zhang HG. TLR2-mediated expansion of MDSCs is dependent on the source of tumor exosomes. Am J Pathol. 2010;177(4):1606鈥?0. CrossRef
    26. Chalmin F, Ladoire S, Mignot G, Vincent J, Bruchard M, Remy-Martin JP, Boireau W, Rouleau A. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest. 2010;120(2):457鈥?1.
    27. R茅b茅 C, V茅gran F, Berger H, Ghiringhelli F. STAT3 activation: a key factor in tumor immunoescape. Jakstat. 2013;2(1):e23010.
    28. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9:162鈥?4. CrossRef
    29. Abad C, Nobuta H, Li J, Kasai A, Yong WH, Waschek JA. Targeted STAT3 disruption in myeloid cells alters immunosuppressor cell abundance in a murinemodel of spontaneous medulloblastoma. J Leukoc Biol. 2014;95(2):357鈥?7. CrossRef
    30. Kujawski M, Kortylewski M, Lee H, Herrmann A, Kay H, Yu H. Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J Clin Invest. 2008;118(10):3367鈥?7. CrossRef
    31. Rodriguez PC, Quiceno DG, Ochoa AC. L-Arginine availability regulates T-lymphocyte cell-cycle progression. Blood. 2007;109(4):1568鈥?3. CrossRef
    32. Rodriguez PC, Ochoa AC. Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol Rev. 2008;222:180鈥?1. CrossRef
    33. Rodriguez PC, Quiceno DG, Zabaleta J, Ortiz B, Zea AH, Piazuelo MB, Delgado A, Correa P, Brayer J, Sotomayor EM, Antonia S, Ochoa JB, Ochoa AC. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res. 2004;64(16):5839鈥?9. CrossRef
    34. Pan PY, Ma G, Weber KJ, Ozao-Choy J, Wang G, Yin B, Divino CM, Chen SH. Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer. Cancer Res. 2010;70(1):99鈥?08. CrossRef
    35. Bingisser RM, Tilbrook PA, Holt PG, Kees UR. Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/STAT5 signaling pathway. J Immunol. 1998;160(12):5729鈥?4.
    36. Mannick JB, Hausladen A, Liu L, Hess DT, Zeng M, Miao QX, Kane LS, Gow AJ, Stamler JS. Fas-induced caspase denitrosylation. Science. 1999;284(5414):651鈥?. CrossRef
  • 刊物主题:Oncology; Hematology; Pathology; Internal Medicine;
  • 出版者:Springer US
  • ISSN:1559-131X
文摘
Myeloid-derived suppressor cells (MDSCs), one of the main cell populations, are responsible for regulating the immune response, which accumulates in tumor-bearing mice and humans contributing to cancer development. Exosomes produced by tumor cells have been involved in tumor-associated immune suppression. However, the role of exosomes is unclear in the activation of MDSCs. Here, we have purified tumor-derived exosomes from the supernatants of Renca cell cultures. Transmission electron microscopy was used to confirm their morphology, and Western blot analysis showed that Hsp70 was rich in these isolated exosomes compared with the whole-cell lysates of Renca cells. Then, we demonstrated that there was a more powerful activity of exosomal Hsp70-mediated induction of proinflammation cytokines, tumor growth factors of MDSCs and tumor progression than exosomes pre-incubated with anti-Hsp70 antibody. Furthermore, we show that an interactive exosomal HSP70 and MDSCs determine the suppressive activity of the MDSCs via phosphorylation of Stat3 (p-Stat3). Finally, we show that exosomal Hsp70 triggers p-Stat3 in MDSCs in a TLR2-MyD88-dependent manner. Meanwhile, we also find that there is a more significant increase in the percentage of CD11b+Gr-1+ cells in the mice, which are treated with exosomal Hsp70 than that exosomes pre-incubated with anti-Hsp70 antibody. Hence, we believe that the signaling pathway activation by exosomal Hsp70 within MDSCs may be a significant target in future treatment of renal cell carcinoma.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700