用户名: 密码: 验证码:
Improved dehydrogenation/rehydrogenation performance of LiBH4 by doping mesoporous Fe2O3 or/and TiF3
详细信息    查看全文
  • 作者:Hui Zhang (1) (2)
    Zhong Cao (1)
    Li-Xian Sun (2) (3)
    Yu-Jia Sun (4)
    Fen Xu (5)
    Hui Liu (1) (2)
    Jian Zhang (2)
    Zi-Qiang Huang (2)
    Xia Jiang (2)
    Zhi-Bao Li (2)
    Shuang Liu (2)
    Shuang Wang (2)
    Cheng-Li Jiao (2)
    Huai-Ying Zhou (3)
    Yutaka Sawada (6)
  • 关键词:LiBH4 ; Mesoporous iron oxide ; Trifluoride antimony ; Co ; doped system ; Hydrogen storage
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:112
  • 期:3
  • 页码:1407-1414
  • 全文大小:715KB
  • 参考文献:1. Pekker S, Salvetat J-P, Jakab E, Bonard J-M, Forró L. Hydrogenation of carbon nanotubes and graphite in liquid ammonia. J Phys Chem B. 2001;105:7938-3. CrossRef
    2. Logvinenko VA, Yutkin MP, Zavakhina MS, Fedin VP. Porous metal–organic frameworks (MOFs) as matrices for inclusion compounds kinetic stability under heating. J Therm Anal Calorim. 2012;. doi:10.1007/s10973-012-2296-4 .
    3. Schüth F, Bogdanovi? B, Felderhoff M. Light metal hydrides and complex hydrides for hydrogen storage. Chem Commun. 2004;20:2249-8. CrossRef
    4. Zhou Y-X, Sun L-X, Cao Z, Zhang J, Xu F, Song L-F, Zhao Z-M, Zou Y-J. Heat capacities and thermodynamic properties of M(HBTC) (4,4-bipy)·3DMF (M?=?Ni and Co). J Therm Anal Calorim. 2011;. doi:10.1007/s10973-011-1889-7 .
    5. Mao J, Guo Z, Leng H, Zhu W, Guo Y, Xuebin Y, Liu H. Reversible hydrogen storage in destabilized LiAlH4–MgH2–LiBH4 ternary-hydride system doped with TiF3. J Phys Chem C. 2010;114:11643-. CrossRef
    6. Grochala W, Edwards PP. Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. Chem Rev. 2004;104:1283-16. CrossRef
    7. DOE Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles. http://www1.eere.energy.gov/hydrogenandfuelcells/storage/pdfs/targets_onboard_hydro_storage.pdf.
    8. Sun D, Srinivasan SS, Kiyobayashi T, Kuriyama N, Jensen CM. Rehydrogenation of dehydrogenated NaAlH4 at low temperature and pressure. J Phys Chem B. 2003;107:10176-. CrossRef
    9. Chen J, Kuriyama N, Qiang X, Takeshita HT, Sakai T. Reversible hydrogen storage via titanium-catalyzed LiAlH4 and Li3AlH6. J Phys Chem B. 2001;105:11214-0. CrossRef
    10. Chen P, Xiong Z, Luo J, et al. Interaction of hydrogen with metal nitrides and imides. Nature. 2002;420:302-. CrossRef
    11. Yang J, Sudik A, Siegel DJ, Halliday D, Drews A, Carter RO, Wolverton C, Lewis GJ, Adriaan Sachtler JW, Low JJ, Faheem SA, Lesch DA, Ozolin? V. A self-catalyzing hydrogen-storage material. Angew Chem Int Ed. 2008;47:882-. CrossRef
    12. Barkhordarian G, Klassen T, Dornheim M, Bormann R. Unexpected kinetic effect of MgB2 in reactive hydride composites containing complex borohydrides. J Alloy Compd. 2007;440:L18-1. CrossRef
    13. Juan X, Xuebin Y, Zou Z, Li Z, Zhu W, Akins DL, Yang H. Enhanced dehydrogenation of LiBH4 catalyzed by carbon-supported Pt nanoparticles. Chem Commun. 2008;44:5740-.
    14. Li ZP, Liu BH, Arai K, Suda S. A fuel cell development for using borohydrides as the fuel. J Electrochem Soc. 2003;150:A868-2. CrossRef
    15. Orimo S, Nakamori Y, Kitahara G, Miwa K, Ohba N, Towata S, Züttel A. Dehydriding and rehydriding reactions of LiBH4. J Alloy Compd. 2005;404-06:427-0. CrossRef
    16. Vajo JJ, Olson GL. Hydrogen storage in destabilized chemical systems. Scripta Mater. 2007;56:829-4. CrossRef
    17. Fang ZZ, Wang P, Rufford TE, Kang XD, Lu GQ, Cheng HM. Kinetic- and thermodynamic-based improvements of lithium borohydride incorporated into activated carbon. Acta Mater. 2008;56:6257-3. CrossRef
    18. Miwa K, Ohba N, Towata S. First-principles study on lithium borohydride LiBH4. Phys Rev B. 2004;6:245120. CrossRef
    19. Miwa K, Ohba N, Towata S, Nakamori Y, Orimo S. First-principles study on copper-substituted lithium borohydride, (Li1?em class="a-plus-plus">x Cu / x )BH4. J Alloy Compd. 2005;404-06:140-. CrossRef
    20. Yang WN, Shang CX, Guo ZX. Site density effect of Ni particles on hydrogen desorption of MgH2. Int J Hydrogen Energy. 2010;35:4534-2. CrossRef
    21. Crosby K, Wan X, Shaw LL. Improving solid-state hydriding and dehydriding properties of the LiBH4 plus MgH2 system with the addition of Mn and V dopants. J Power Sources. 2010;195:7380-. CrossRef
    22. Züttel A, Rentsch S, Fischer P, Wenger P, Sudan P, Mauron Ph, Emmenegger Ch. Hydrogen storage properties of LiBH4. J Alloy Compd. 2003;356-57:515-0. CrossRef
    23. Züttel A, Wenger P, Rentsch S, Sudan P, Mauron Ph, Emmenegger Ch. LiBH4 a new hydrogen storage material. J Power Sources. 2003;118:1-. CrossRef
    24. Yu XB, Grant DM, Walker GS. Dehydrogenation of LiBH4 destabilized with various oxides. J Phys Chem C. 2009;113:17945-. CrossRef
    25. Vajo JJ, Skeith SL. Reversible storage of hydrogen in destabilized LiBH4. J Phys Chem B. 2005;109:3719-2. CrossRef
    26. Ming A, Jurgensen A. Modified lithium borohydrides for reversible hydrogen storage. J Phys Chem B. 2006;110:7062-. CrossRef
    27. Ming A, Jurgensen A, Zeigler K. Modified lithium borohydrides for reversible hydrogen storage (2). J Phys Chem B. 2006;110:26482-. CrossRef
    28. Ming A, Jurgensen AR, Spencer WA, Anton DL, Pinkerton FE, Hwang S-J, Kim C, Bowman RC. Stability and reversibility of lithium borohydrides doped by metal halides and hydrides. J Phys Chem C. 2008;112:18661-1.
    29. Zaluski L, Zaluska A, Str?m-Olsen JO. Nanocrystalline metal hydrides. J Alloy Compd. 1997;253-54:70-. CrossRef
    30. Bérubé V, Radtke G, Dresselhaus M, Chen G. Size effects on the hydrogen storage properties of nanostructured metal hydrides: a review. Int J Energy Res. 2007;31:637-3. CrossRef
    31. Rudy WP, Wagemans JH, van Lenthe PE, de Jongh A, van Dillen J, de Jong KP. Hydrogen storage in magnesium clusters: quantum chemical study. J Am Chem Soc. 2005;127:16675-0. CrossRef
    32. Gutowska A, Li L, Shin Y, Wang CM, Xiaohong S, Linehan JC, Scott Smith R, Kay BD, Schmid B, Shaw W, Gutowski M, Autrey T. Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. Angew Chem Int Ed. 2005;44:3578-2. CrossRef
    33. Baldé CP, Hereijgers BPC, Bitter JH, de Jong KP. Facilitated hydrogen storage in NaAlH4 supported on carbon nanofibers. Angew Chem Int Ed. 2006;45:3501-. CrossRef
    34. Baldé CP, Hereijgers BPC, Bitter JH, de Jong KP. Sodium alanate nanoparticles-linking size to hydrogen storage properties. J Am Chem Soc. 2008;130:6761-. CrossRef
    35. Gross AF, Vajo JJ, Van Atta SL, Olson GL. Enhanced hydrogen storage kinetics of LiBH4 in nanoporous carbon scaffolds. J Phys Chem C. 2008;112:5651-. CrossRef
    36. Cahen S, Eymery J-B, Janot R, Tarascon J-M. Improvement of the LiBH4 hydrogen desorption by inclusion into mesoporous carbons. J Power Sources. 2009;189:902-. CrossRef
    37. Huang CL, Zhang HY, Sun ZY, Liu ZM. Chitosan-mediated synthesis of mesoporous α-Fe2O3 nanoparticles and their applications in catalyzing selective oxidation of cyclohexane. Sci China Chem. 2010;53:1502-. CrossRef
    38. Zhang H, Zhou YX, Sun LX, Cao Z, Xu F, Liu SS, Zhang J, Song LF, Si XL, Jiao CL, Wang S, Li ZB, Liu S, Li F. Synergistic catalysis of Fe2O3 and TiF3 additives on the LiBH4–MgH2 composite. Chem J Chin Univ. 2012;33:1-.
    39. Qi YN, Zhang J, Qiu SJ, Sun LX, Xu F, Zhu M, et al. Thermal stability, decomposition and glass transition behavior of PANI/NiO composites. J Therm Anal Calorim. 2009;98:533-. CrossRef
    40. Jiao CL, Song LF, Jiang CH, Zhang J, Si XL, Qiu SJ, Wang S, Sun LX, Xu F, Li F, Zhao JL. Low-temperature heat capacities and thermodynamic properties of Mn3(HEDTA)2·H2O. J Therm Anal Calorim. 2010;102:1155-0. CrossRef
    41. Jiang CH, Song LF, Jiao CL, Zhang J, Sun LX, Xu F, Zhang HZ, Xu QY, Gabelica Z. Determination of heat capacities and thermodynamic properties of two structurally unrelated but isotypic calcium and manganese(II)2,6-naphthalene dicarboxylate-based MOFs. J Therm Anal Calorim. 2011;103:1095-03. CrossRef
    42. Song LF, Jiang CH, Jiao CL, Zhang J, Sun LX, Xu F, Jiao QZ, Xing YH, Du Y, Cao Z, Huang FL. Heat capacities and thermodynamic properties of one manganese-based MOFs. J Therm Anal Calorim. 2010;102:1161-. CrossRef
    43. Jiang CH. Synthesis, thermochemistry, adsorption and senor performances of organic-inorganic coordination polymers. Dissertation for Doctoral Degree, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 2011; p. 131-.
    44. Wang P, Kang XD, Cheng HM. Improved hydrogen storage of TiF3-doped NaAlH4. ChemPhysChem. 2005;6:2488-1. CrossRef
    45. Mosegaard L, M?ller B, J?rgensen J-E, et al. Intermediate phases observed during decomposition of LiBH4. J Alloy Compd. 2007;446-47:301-. CrossRef
  • 作者单位:Hui Zhang (1) (2)
    Zhong Cao (1)
    Li-Xian Sun (2) (3)
    Yu-Jia Sun (4)
    Fen Xu (5)
    Hui Liu (1) (2)
    Jian Zhang (2)
    Zi-Qiang Huang (2)
    Xia Jiang (2)
    Zhi-Bao Li (2)
    Shuang Liu (2)
    Shuang Wang (2)
    Cheng-Li Jiao (2)
    Huai-Ying Zhou (3)
    Yutaka Sawada (6)

    1. Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, 410004, People’s Republic of China
    2. Materials and Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People’s Republic of China
    3. Faculty of Material Science & Engineering, Guilin University of Electrical Technology, Guilin, 541004, China
    4. College of Chemistry & Molecular Science, Wuhan University, Wuhan, 430072, People’s Republic of China
    5. Department of Material Science & Engineering, Guilin University of Electrical Technology, Guilin, 541004, People’s Republic of China
    6. Center for Hyper Media Research, Graduate School of Engineering, Tokyo Polytechnic University, 1583 Iiyama, Atsugi, Kanagawa, 243-0297, Japan
  • ISSN:1572-8943
文摘
The LiBH4?+?mesoporous Fe2O3 (defined as M-Fe2O3) mono-doped and LiBH4?+?M-Fe2O3?+?TiF3 co-doped hybrid materials were prepared by ball milling process. A variety of characterization methods, such as thermogravimetric, differential scanning calorimetry, X-ray diffraction, and pressure–composition–temperature instrument, were used for examinations of the two materials-performances of storage/release of hydrogen, catalytic activity, kinetics, and thermodynamics. All the results showed that the M-Fe2O3 prepared in laboratory exhibited a good catalytic effect. Compared with the performance of M-Fe2O3 mono-doped system, M-Fe2O3 and TiF3 co-doped mode exhibits a better performance using the same additive content. Thus, the M-Fe2O3 and TiF3 co-doped mode possesses a collaborative catalytic utility with the LiBH4 hydrogen performance improved, showing a promising application.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700