用户名: 密码: 验证码:
Characterization of the tunicamycin gene cluster unveiling unique steps involved in its biosynthesis
详细信息    查看全文
  • 作者:Wenqing Chen (1) (3)
    Dongjing Qu (1)
    Lipeng Zhai (1)
    Meifeng Tao (1)
    Yemin Wang (1)
    Shuangjun Lin (1)
    Neil P. J. Price (2)
    Zixin Deng (1) (3)
  • 关键词:tunicamycin ; biosynthetic gene cluster ; high ; throughput heterologous expression ; bioassay ; combinatorial biosynthesis
  • 刊名:Protein & Cell
  • 出版年:2010
  • 出版时间:December 2010
  • 年:2010
  • 卷:1
  • 期:12
  • 页码:1093-1105
  • 全文大小:519KB
  • 参考文献:1. Bai, L., Li, L., Xu, H., Minagawa, K., Yu, Y., Zhang, Y., Zhou, X., Floss, H.G., Mahmud, T., and Deng, Z. (2006). Functional analysis of the validamycin biosynthetic gene cluster and engineered production of validoxylamine A. Chem Biol 13, 387-97. CrossRef
    2. Bentley, S.D., Chater, K.F., Cerde?o-Tárraga, A.M., Challis, G.L., Thomson, N.R., James, K.D., Harris, D.E., Quail, M.A., Kieser, H., Harper, D., / et al. (2002). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141-47. CrossRef
    3. Chen, W., Huang, T., He, X., Meng, Q., You, D., Bai, L., Li, J., Wu, M., Li, R., Xie, Z., / et al. (2009). Characterization of the polyoxin biosynthetic gene cluster from Streptomyces cacaoi and engineered production of polyoxin H. J Biol Chem 284, 10627-0638. CrossRef
    4. Creuzenet, C., Belanger, M., Wakarchuk, W.W., and Lam, J.S. (2000). Expression, purification, and biochemical characterization of WbpP, a new UDP-GlcNAc C4 epimerase from Pseudomonas aeruginosa serotype O6. J Biol Chem 275, 19060-9067. CrossRef
    5. Eckardt, K. (1983). Tunicamycins, streptovirudins, and corynetoxins, a special subclass of nucleoside antibiotics. J Nat Prod 46, 544-50. CrossRef
    6. Eckardt, K., Thrum, H., Bradler, G., Tonew, E., and Tonew, M. (1975). Streptovirudins, new antibiotics with antibacterial and antiviral activity. II. Isolation, chemical characterization and biological activity of streptovirudins A1, A2, B1, B2, C1, C2, D1, and D2. J Antibiot (Tokyo) 28, 274-79.
    7. Gross, J.W., Hegeman, A.D., Vestling, M.M., and Frey, P.A. (2000). Characterization of enzymatic processes by rapid mix-quench mass spectrometry: the case of dTDP-glucose 4,6-dehydratase. Biochemistry 39, 13633-3640. CrossRef
    8. Gust, B., Challis, G.L., Fowler, K., Kieser, T., and Chater, K.F. (2003). PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100, 1541-546. CrossRef
    9. Ishikawa, J., and Hotta, K. (1999). FramePlot: a new implementation of the frame analysis for predicting protein-coding regions in bacterial DNA with a high G + C content. FEMS Microbiol Lett 174, 251-53. CrossRef
    10. Jian, X., Pang, X., Yu, Y., Zhou, X., and Deng, Z. (2006). Identification of genes necessary for jinggangmycin biosynthesis from Streptomyces hygroscopicus 10-2. Antonie Van Leeuwenhoek 90, 29-9. CrossRef
    11. Kapp, U., Macedo, S., Hall, D.R., Leiros, I., McSweeney, S.M., and Mitchell, E. (2008). Structure of Deinococcus radiodurans tunicamycin-resistance protein (TmrD), a phosphotransferase. Acta Crystallogr Sect F Struct Biol Cryst Commun 64, 479-86. CrossRef
    12. Kaysser, L., Lutsch, L., Siebenberg, S., Wemakor, E., Kammerer, B., and Gust, B. (2009). Identification and manipulation of the caprazamycin gene cluster lead to new simplified liponucleoside antibiotics and give insights into the biosynthetic pathway. J Biol Chem 284, 14987-4996. CrossRef
    13. Kaysser, L., Siebenberg, S., Kammerer, B., and Gust, B. (2010). Analysis of the liposidomycin gene cluster leads to the identification of new caprazamycin derivatives. Chembiochem 11, 191-96. CrossRef
    14. Keenan, R.W., Hamill, R.L., Occolowitz, J.L., and Elbein, A.D. (1981). Biological activities of isolated tunicamycin and streptovirudin fractions. Biochemistry 20, 2968-973. CrossRef
    15. Kenig, M., and Reading, C. (1979). Holomycin and an antibiotic (MM 19290) related to tunicamycin, metabolites of Streptomyces clavuligerus. J Antibiot (Tokyo) 32, 549-54.
    16. Kieser, T., Bibb, M.J., Chater, K.F., Butter, M.J., and Hopwood, D.A. (2000). Practical Streptomyces Genetics, 2nd ed., John Innes Foundation, Norwich, United Kingdom.
    17. Kimura, K., and Bugg, T.D. (2003). Recent advances in antimicrobial nucleoside antibiotics targeting cell wall biosynthesis. Nat Prod Rep 20, 252-73. CrossRef
    18. Liang, X., Lu, Y., Neubert, T.A., and Resh, M.D. (2002). Mass spectrometric analysis of GAP-43/neuromodulin reveals the presence of a variety of fatty acylated species. J Biol Chem 277, 33032-3040. CrossRef
    19. Martinez, A., Kolvek, S.J., Yip, C.L., Hopke, J., Brown, K.A., MacNeil, I.A., and Osburne, M.S. (2004). Genetically modified bacterial strains and novel bacterial artificial chromosome shuttle vectors for constructing environmental libraries and detecting heterologous natural products in multiple expression hosts. Appl Environ Microbiol 70, 2452-463. CrossRef
    20. Medema, M.H., Trefzer, A., Kovalchuk, A., van den Berg, M., Müller, U., Heijne, W., Wu, L., Alam, M.T., Ronning, C.M., Nierman, W.C., / et al. (2010). The sequence of a 1.8-mb bacterial linear plasmid reveals a rich evolutionary reservoir of secondary metabolic pathways. Genome Biol Evol 2, 212-24. CrossRef
    21. Noda, Y., Takatsuki, A., Yoda, K., and Yamasaki, M. (1995). TmrB protein, which confers resistance to tunicamycin on Bacillus subtilis, binds tunicamycin. Biosci Biotechnol Biochem 59, 321-22. CrossRef
    22. Noda, Y., Yoda, K., Takatsuki, A., and Yamasaki, M. (1992). TmrB protein, responsible for tunicamycin resistance of Bacillus subtilis, is a novel ATP-binding membrane protein. J Bacteriol 174, 4302-307.
    23. Omura, S., Ikeda, H., Ishikawa, J., Hanamoto, A., Takahashi, C., Shinose, M., Takahashi, Y., Horikawa, H., Nakazawa, H., Osonoe, T., / et al. (2001). Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci U S A 98, 12215-2220. CrossRef
    24. Ostash, B., Saghatelian, A., and Walker, S. (2007). A streamlined metabolic pathway for the biosynthesis of moenomycin A. Chem Biol 14, 257-67. CrossRef
    25. Patterson, S.I., and Skene, J.H. (1994). Novel inhibitory action of tunicamycin homologues suggests a role for dynamic protein fatty acylation in growth cone-mediated neurite extension. J Cell Biol 124, 521-36. CrossRef
    26. Price, N.P., and Momany, F.A. (2005). Modeling bacterial UDPHexNAc: polyprenol-P HexNAc-1-P transferases. Glycobiology 15, 29R-2R. CrossRef
    27. Price, N.P., and Tsvetanova, B. (2007). Biosynthesis of the tunicamycins: a review. J Antibiot (Tokyo) 60, 485-91.
    28. Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, NY.
    29. Singh, D., Seo, M.J., Kwon, H.J., Rajkarnikar, A., Kim, K.R., Kim, S. O., and Suh, J.W. (2006). Genetic localization and heterologous expression of validamycin biosynthetic gene cluster isolated from Streptomyces hygroscopicus var. limoneus KCCM 11405 (IFO 12704). Gene 376, 13-3. CrossRef
    30. Tsvetanova, B.C., Kiemle, D.J., and Price, N.P. (2002). Biosynthesis of tunicamycin and metabolic origin of the 11-carbon dialdose sugar, tunicamine. J Biol Chem 277, 35289-5296. CrossRef
    31. Tsvetanova, B.C., and Price, N.P. (2001). Liquid chromatographyelectrospray mass spectrometry of tunicamycin-type antibiotics. Anal Biochem 289, 147-56. CrossRef
    32. Vogel, P., Petterson, D.S., Berry, P.H., Frahn, J.L., Anderton, N., Cockrum, P.A., Edgar, J.A., Jago, M.V., Lanigan, G.W., Payne, A. L., / et al. (1981). Isolation of a group of glycolipid toxins from seedheads of annual ryegrass Lolium rigidum Gaud.) infected by Corynebacterium rathayi. Aust J Exp Biol Med Sci 59, 455-67. CrossRef
    33. Wecksler, S.R., Stoll, S., Tran, H., Magnusson, O.T., Wu, S.P., King, D., Britt, R.D., and Klinman, J.P. (2009). Pyrroloquinoline quinone biogenesis: demonstration that PqqE from Klebsiella pneumoniae is a radical S-adenosyl-L-methionine enzyme. Biochemistry 48, 10151-0161. CrossRef
    34. Winn, M., Goss, R.J., Kimura, K., and Bugg, T.D. (2010). Antimicrobial nucleoside antibiotics targeting cell wall assembly: recent advances in structure-function studies and nucleoside biosynthesis. Nat Prod Rep 27, 279-04. CrossRef
    35. Xu, L., Appell, M., Kennedy, S., Momany, F.A., and Price, N.P. (2004). Conformational analysis of chirally deuterated tunicamycin as an active site probe of UDP-N-acetylhexosamine:polyprenol-P Nacetylhexosamine-1-P translocases. Biochemistry 43, 13248-3255. CrossRef
    36. Yu, T.W., Bai, L., Clade, D., Hoffmann, D., Toelzer, S., Trinh, K.Q., Xu, J., Moss, S.J., Leistner, E., and Floss, H.G. (2002). The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum. Proc Natl Acad Sci U S A 99, 7968-973. CrossRef
    37. Yu, Y., Bai, L., Minagawa, K., Jian, X., Li, L., Li, J., Chen, S., Cao, E., Mahmud, T., Floss, H.G., / et al. (2005). Gene cluster responsible for validamycin biosynthesis in Streptomyces hygroscopicus subsp. jinggangensis 5008. Appl Environ Microbiol 71, 5066-076. CrossRef
    38. Zayas, C.L., and Escalante-Semerena, J.C. (2007). Reassessment of the late steps of coenzyme B12 synthesis in Salmonella enterica: evidence that dephosphorylation of adenosylcobalamin-5-phosphate by the CobC phosphatase is the last step of the pathway. J Bacteriol 189, 2210-218. CrossRef
  • 作者单位:Wenqing Chen (1) (3)
    Dongjing Qu (1)
    Lipeng Zhai (1)
    Meifeng Tao (1)
    Yemin Wang (1)
    Shuangjun Lin (1)
    Neil P. J. Price (2)
    Zixin Deng (1) (3)

    1. Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
    3. College of Pharmacy, Wuhan University, Wuhan, 430072, China
    2. National Center for Agricultural Utilization Research (NCAUR), USDA-ARS, 1815 North University Street, Peoria, Illinois, 61604, USA
文摘
Tunicamycin, a potent reversible translocase I inhibitor, is produced by several Actinomycetes species. The tunicamycin structure is highly unusual, and contains an 11-carbon dialdose sugar and an α, β-1-11-glycosidic linkage. Here we report the identification of a gene cluster essential for tunicamycin biosynthesis by high-throughput heterologous expression (HHE) strategy combined with a bioassay. Introduction of the genes into heterologous non-producing Streptomyces hosts results in production of tunicamycin by these strains, demonstrating the role of the genes for the biosynthesis of tunicamycins. Gene disruption experiments coupled with bioinformatic analysis revealed that the tunicamycin gene cluster is minimally composed of 12 genes (tunA-tunL). Amongst these is a putative radical SAM enzyme (Tun B) with a potentially unique role in biosynthetic carbon-carbon bond formation. Hence, a seven-step novel pathway is proposed for tunicamycin biosynthesis. Moreover, two gene clusters for the potential biosynthesis of tunicamycin-like antibiotics were also identified in Streptomyces clavuligerus ATCC 27064 and Actinosynnema mirums DSM 43827. These data provide clarification of the novel mechanisms for tunicamycin biosynthesis, and for the generation of new-designer tunicamycin analogs with selective/enhanced bioactivity via combinatorial biosynthesis strategies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700