用户名: 密码: 验证码:
Carbon dots-based fluorescent probes for sensitive and selective detection of iodide
详细信息    查看全文
  • 作者:Fangkai Du (1)
    Fang Zeng (1)
    Yunhao Ming (1)
    Shuizhu Wu (1)
  • 关键词:Carbon dots ; Fluorescence probe ; Iodide ; Mercury ion ; Fluorescence enhancement
  • 刊名:Microchimica Acta
  • 出版年:2013
  • 出版时间:6 - April 2013
  • 年:2013
  • 卷:180
  • 期:5
  • 页码:453-460
  • 全文大小:384KB
  • 参考文献:1. Hoang AH, Mario L (2003) New colorimetric and fluorometric chemosensor based on a cationic polythiophene derivative for iodide-specific detection. J Am Chem Soc 125:4412-413 CrossRef
    2. Haldimann M, Zimmerli B, Als C, Gerber H (1998) Direct determination of urinary iodine by inductively coupled plasma mass spectrometry using isotope dilution with iodine-129. Clin Chem 44:817-24
    3. Singh N, Jang DO (2007) Benzimidazole-based tripodal receptor: highly selective fluorescent chemosensor for iodide in aqueous solution. Org Lett 9:1991-994 CrossRef
    4. Bichsel Y, Von GU (1999) Determination of iodide and iodate by ion chromatography with postcolumn reaction and UV/Visible detection. Anal Chem 71:34-8 CrossRef
    5. Zhu YC, Cao L, Hao J, Qu QA, Xin SG (2010) Electrochemical liquid-phase microextraction and determination of iodide in kelp based on a carbon paste electrode by cyclic voltammetry. Microchim Acta 170:121-26 CrossRef
    6. Ito K, Ichihara T, Zhuo H, Kumamoto K, Timerbaev AR, Hirokawa T (2003) Determination of trace iodide in seawater by capillary electrophoresis following transient isotachophoretic preconcentration comparison with ion chromatography. Anal Chim Acta 497:67-4 CrossRef
    7. Kamavisdar A, Patel RM (2010) Flow injection spectrophotometric determination of iodide in environmental samples. Microchim Acta 140:119-24
    8. Michael S, Gr?gel DBM, Stephan S (2011) Luminescent probes for detection and imaging of hydrogen peroxide. Microchim Acta 174:1-8 CrossRef
    9. Kim H, Kang J (2005) Iodide selective fluorescent anion receptor with two methylene bridged bis-imidazolium rings on naphthalene. Tetrahedron Lett 46:5443-445 CrossRef
    10. Singh N, Kim MJ, Jang DO (2011) Chromogenic and fluorescent recognition of iodide with a benzimidazole-based tripodal receptor. Org Lett 13:3024-027 CrossRef
    11. Corma A, Galletero MS, Garcia H, Palomares E, Rey F (2002) Pyrene covalently anchored on a large external surface area zeolite as a selective heterogeneous sensor for iodide. Chem Commun 1100-101
    12. Li HB, Han CP, Zhang L (2008) Synthesis of cadmium selenide quantum dots modified with thiourea type ligands as fluorescent probes for iodide ions. J Mater Chem 18:4543-548 CrossRef
    13. Zhao HX, Liu LQ, Liu ZD, Wang Y, Zhao XJ, Huang CZ (2011) Highly selective detection of phosphate in very complicated matrixes with an off–on fluorescent probe of europium-adjusted carbon dots. Chem Commun 47:2604-606 CrossRef
    14. Yu CW, Zhang J, Li JH, Liu P, Wei PH, Chen LX (2011) Fluorescent probe for copper(II) ion based on a rhodaminespirolactame derivative, and its application to fluorescent imaging in living cells. Microchim Acta 174:247-55 CrossRef
    15. Martinez MR, Sancenon F (2003) Fluorogenic and chromogenic chemosensors and reagents for anions. Chem Rev 103:4419-476 CrossRef
    16. Lin LR, Fang W, Yu Y, Huang RB, Zheng LS (2007) Selective recognition iodide in aqueous solution based on fluorescence enhancement chemosensor. Spectrochim Acta A Mol Biomol Spectrosc 67:1403-406 CrossRef
    17. Ma BL, Zeng F, Zheng FY, Wu SZ (2011) A fluorescence turn-on sensor for iodide based on a thymine–HgII–thymine complex. Chem Eur J 17:14844-4850 CrossRef
    18. Liu L, Xiao L, Zhu HY, Shi XW (2012) Preparation of magnetic and fluorescent bifunctional chitosan nanoparticles for optical determination of copper ion. Microchim Acta 178:413-19 CrossRef
    19. Wang XH, Peng HS, Chang Z, Hou LL, You FT, Teng F, Song HW, Dong B (2012) Synthesis of ratiometric fluorescent nanoparticles for sensing oxygen. Microchim Acta 178:147-52 CrossRef
    20. Wang J, Liang JG, Sheng ZH, Han HY (2009) A novel strategy for selective detection of Ag+ based on the red-shift of emission wavelength of quantum dots. Microchim Acta 167:281-87 CrossRef
    21. Wang XH, Qu KG, Xu BL, Ren JS, Qu XG (2011) Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents. J Mater Chem 21:2445-450 CrossRef
    22. Li HT, He XD, Kang ZH, Huang H, Liu Y, Liu JL, Lian SY, Tsang CHA, Yang XB, Lee ST (2010) Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed 49:4430-434 CrossRef
    23. Mohd Yazid SNA, Chin SF, Pang SC, Ng SM (2013) Detection of Sn(II) ions via quenching of the fluorescence of carbon nanodots. Microchim Acta 180:137-43 CrossRef
    24. Zhai XY, Zhang P, Liu CJ, Bai T, Li WC, Dai LM, Liu WG (2012) Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chem Commun 48:7955-957 CrossRef
    25. Jaiswal A, Ghosh SS, Chattopadhyay A (2012) One step synthesis of C-dots by microwave mediated caramelization of poly(ethylene glycol). Chem Commun 48:407-09 CrossRef
    26. Liu CJ, Zhang P, Zhai XY, Tian F, Li WC, Yang JH, Liu Y, Wang HB, Wang W, Liu WG (2012) Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials 33:3604-613 CrossRef
    27. Peng H, Travas SJ (2009) Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem Mater 21:5563-565 CrossRef
    28. Tang L, Ji R, Cao X, Lin J, Jiang H, Li X, Teng KS, Luk CM, Zeng S, Hao J, Lau SP (2012) Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 6:5102-110 CrossRef
    29. Yan XB, Xu T, Chen G, Yang S, Liu H, Xue Q (2004) Preparation and characterization of electrochemically deposited carbon nitride films on silicon substrate. J Phys D Appl Phys 37:907-13 CrossRef
    30. Chandra S, Pathan SH, Mitra S, Modha BH, Goswami A, Pramanik P (2012) Tuning of photoluminescence on different surface functionalized carbon quantum dots. RSC Advances 2:3602-606 CrossRef
    31. Lu XB, Qin XY, Liu S, Chang GH, Zhang YW, Luo YL, Asiri AM, AlYoubi AO, Sun XP (2012) Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Anal Chem 84:5351-357 CrossRef
    32. Qu Q, Zhu AW, Shao XL, Shi GY, Tian Y (2012) Development of a carbon quantum dots-based fluorescent Cu2+ probe suitable for living cell imaging. Chem Commun 48:5473-475 CrossRef
    33. Xia YS, Zhu CQ (2008) Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury (II). Talanta 75:215-21
    34. Jagadeeswari S, Jhonsi MA, Kathiravan A, Renganathan R (2011) Photoinduced interaction between MPA capped CdTe QDs and certain anthraquinone dyes. J Lumin 131:597-02 CrossRef
    35. Hepler LG, Olofsson G (1975) Mercury: thermodynamic properties, chemical equilibria, and standard potentials. Chem Rev 75:585-02 CrossRef
    36. Zeng HL, Durocher G (1995) Analysis of fluorescence quenching in some antioxidants from non-linear Stern-Volmer plots. J Lumin 63:75-4 CrossRef
    37. Wei S-C, Hsu P-H, Lee Y-F, Lin Y-W, Huang C-C (2012) Selective detection of iodide and cyanide anions using gold-nanoparticle-based fluorescent probes. ACS Appl Mater Interfaces 4:2652-658 CrossRef
    38. Wang M, Wu ZK, Yang J, Wang GZ, Wang HZ, Cai WP (2012) Au25(SG)18 as a fluorescent iodide sensor. Nanoscale 4:4087-090 CrossRef
    39. Shang ZB, Wang Y, Jin WJ (2009) Triethanolamine-capped CdSe quantum dots as fluorescent sensors for reciprocal recognition of mercury (II) and iodide in aqueous solution. Talanta 78:364-69 CrossRef
  • 作者单位:Fangkai Du (1)
    Fang Zeng (1)
    Yunhao Ming (1)
    Shuizhu Wu (1)

    1. College of Materials Science & Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
  • ISSN:1436-5073
文摘
We report on a simple method for the determination of iodide in aqueous solution by exploiting the fluorescence enhancement that is observed if the complex formed between carbon dots and mercury ion is exposed to iodide. Fluorescent carbon dots (C-dots) were treated with Hg(II) ion which causes quenching of the emission of the C-dots. On addition of iodide, the Hg(II) ions are removed from the complex due to the strong interaction between Hg(II) and iodide. This causes the fluorescence to be restored and enables iodide to be determined in the 0.5 to 20?μM concentration range and with a detection limit of ~430?nM. The test is highly selective for iodide (over common other anions) and was used for the determination of iodide in urine. Figure A“turn-on-fluorescent probe based on carbon dots was obtained and using it to determine the concentration of iodide according to the fluorescent enhancement in aqueous solution

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700