用户名: 密码: 验证码:
Porous WO3/reduced graphene oxide composite film with enhanced electrochromic properties
详细信息    查看全文
  • 作者:BoWen Zhao ; ShuJuan Lu ; Xin Zhang ; Hao Wang ; JingBing Liu ; Hui Yan
  • 关键词:Tungsten oxide ; Graphene ; Composite film ; Electrochromic
  • 刊名:Ionics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:22
  • 期:2
  • 页码:261-267
  • 全文大小:1,071 KB
  • 参考文献:1.Granqvist CG (2000) Electrochromic tungsten oxide films: review of progress 1993–1998. Sol Energy Mater Sol Cells 60:201–262CrossRef
    2.Sallard S, Brezesinski T, Smarsly BM (2007) Electrochromic stability of WO3 thin films with nanometer-scale periodicity and varying degrees of crystallinity. J Phys Chem C 111:7200–7206CrossRef
    3.Dalavi DS, Devan RS, Patil RA, Patil RS, Ma YR, Sadale SB, Kim I, Kim JH, Patil PS (2013) Efficient electrochromic performance of nanoparticulate WO3 thin films. J Mater Chem C 1:3722–3728CrossRef
    4.Granqvist CG (1995) Handbook of inorganic electrochromic materials. Elsevier Science B.V, Amsterdam, pp 1–15CrossRef
    5.Gillaspie DT, Tenent RC, Dillon AC (2010) Metal-oxide films for electrochromic applications: present technology and future directions. J Mater Chem 20:9585–9592CrossRef
    6.Granqvist CG (1999) Progress in electrochromics: tungsten oxide revisited. Electrochim Acta 44:3005–3015CrossRef
    7.Crandall RS, Faughnan BW (1976) Dynamics of coloration of amorphous electrochromic films of WO3 at low voltages. Appl Phys Lett 28:95–97CrossRef
    8.Faughnan BW, Crandall RS, Lampert MA (1975) Model for the bleaching of WO3 electrochromic films by an electric field. Appl Phys Lett 27:275–277CrossRef
    9.Subramanian Balaji YD, Albert A-S, Bruning R, Beaudoin N, Robichauda J (2011) Porous orthorhombic tungsten oxide thin films synthesis, characterization, and application in electrochromic and photochromic devices. J Mater Chem 21:3940–3948CrossRef
    10.Fang Y, Sun X, Cao H (2011) Influence of PEG additive and annealing temperature on structural and electrochromic properties of sol–gel derived WO3 films. J Sol-Gel Sci Technol 59:145–152CrossRef
    11.Ou JZ, Balendhran S, Field MR, McCulloch DG, Zoolfakar AS, Rani RA, Zhuiykov S, O’Mullane AP, Kalantar-Zadeh K (2012) The anodized crystalline WO3 nanoporous network with enhanced electrochromic properties. Nanoscale 4:5980–5988CrossRef
    12.Shao D, Yu M, Lian J, Sawyer S (2013) An ultraviolet photodetector fabricated from WO3 nanodiscs/reduced graphene oxide composite material. Nanotechnology 24:295701CrossRef
    13.Liu Y, Li W, Li J, Yang Y, Chen Q (2014) Enhancing photoelectrochemical performance with a bilayer-structured film consisting of graphene–WO3 nanocrystals and WO3 vertically plate-like arrays as photoanodes. RSC Adv 4:3219–3225CrossRef
    14.Chai B, Li J, Xu Q, Dai K (2014) Facile synthesis of reduced graphene oxide/WO3 nanoplates composites with enhanced photocatalytic activity. Mater Lett 120:177–181CrossRef
    15.Srivastava S, Jain K, Singh VN, Singh S, Vijayan N, Dilawar N, Gupta G, Senguttuvan TD (2012) Faster response of NO2 sensing in graphene-WO3 nanocomposites. Nanotechnology 23:205501CrossRef
    16.Sun B, Zhang K, Chen L, Guo L, Ai S (2013) A novel photoelectrochemical sensor based on PPIX-functionalized WO3-rGO nanohybrid-decorated ITO electrode for detecting cysteine. Biosens Bioelectron 44:48–51CrossRef
    17.Wu H, Xu M, Da P, Li W, Jia D, Zheng G (2013) WO3-reduced graphene oxide composites with enhanced charge transfer for photoelectrochemical conversion. Phys Chem Chem Phys 15:16138–16142CrossRef
    18.Fu C, Foo C, Lee PS (2014) One-step facile electrochemical preparation of WO3/graphene nanocomposites with improved electrochromic properties. Electrochim Acta 117:139–144CrossRef
    19.Zhao B, Zhang X, Dong G, Wang H, Yan H (2015) Efficient electrochromic device based on sol–gel prepared WO3 films. Ionics. doi:10.​1007/​s11581-015-1471-6
    20.Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339CrossRef
    21.Chen Z, Xiao A, Chen Y, Zuo C, Zhou S, Li L (2013) Highly porous nickel oxide thin films prepared by a hydrothermal synthesis method for electrochromic application. J Phys Chem Solids 74:1522–1526CrossRef
    22.Fallah HR, Ghasemi varnamkhasti M, Vahid MJ (2010) Substrate temperature effect on transparent heat reflecting nanocrystalline ITO films prepared by electron beam evaporation. Renew Energy 35:1527–1530CrossRef
    23.Sathiaraj TS (2008) Effect of annealing on the structural, optical and electrical properties of ITO films by RF sputtering under low vacuum level. Microelectron J 39:1444–1451CrossRef
    24.Huang H, Yue Z, Li G, Wang X, Huang J, Du Y, Yang P (2013) Ultraviolet-assisted preparation of mesoporous WO3/reduced graphene oxide composites: superior interfacial contacts and enhanced photocatalysis. J Mater Chem A 1:15110CrossRef
    25.Yu M, Sun H, Sun X, Lu F, Hu T, Wang G, Qiu H, Lian J (2013) 3D WO3 nanowires/graphene nanocomposite with improved reversible capacity and cyclic stability for lithium ion batteries. Mater Lett 108:29–32CrossRef
    26.Wu C-L, Lin C-K, Wang C-K, Wang S-C, Huang J-L (2013) Annealing induced structural evolution and electrochromic properties of nanostructured tungsten oxide films. Thin Solid Films 549:258–262CrossRef
    27.Deepa M, Saxena TK, Singh DP, Sood KN, Agnihotry SA (2006) Spin coated versus dip coated electrochromic tungsten oxide films: structure, morphology, optical and electrochemical properties. Electrochim Acta 51:1974–1989CrossRef
    28.Yu P-F, Cui Z-H, Fan W-G, Guo X-X (2013) Correlation between lithium storage and diffusion properties and electrochromic characteristics of WO3 thin films. Chin Phys B 22:038101CrossRef
    29.Tu J-p, Jun Z, Xia X-h, Wang X-l, Gu C-d (2011) Hydrothermally synthesized WO3 nanowire arrays with highly improved electrochromic performance. J Mater Chem 21:5492–5498CrossRef
    30.Granqvist CG (2014) Electrochromics for smart windows: oxide-based thin films and devices. Thin Solid Films 564:1–38CrossRef
    31.Habib MA, Glueck D (1989) The electrochromic properties of chemically deposited tungsten oxide films. Solar Energy Mater 18:127–141CrossRef
    32.Biswas PK, Pramanik NC, Mahapatra MK, Ganguli D, Livage J (2003) Optical and electrochromic properties of sol–gel WO3 films on conducting glass. Mater Lett 57:4429–4432CrossRef
    33.Jinmin Wang EK, Lee PS, Ma J (2008) Synthesis, assembly, and electrochromic properties of uniform crystalline WO3 nanorods. J Phys Chem C 112:14306–14312CrossRef
    34.Deepa M, Kar M, Agnihotry SA (2004) Electrodeposited tungsten oxide films: annealing effects on structure and electrochromic performance. Thin Solid Films 468:32–42CrossRef
    35.Ma D, Wang H, Zhang Q, Li Y (2012) Self-weaving WO3 nanoflake films with greatly enhanced electrochromic performance. J Mater Chem 22:16633CrossRef
    36.Gui Y, Blackwood DJ (2013) A self-assembled two-layer structured WO3/TiO2-x mixed film with improved electrochromic capacities. J Electrochem Soc 160:E130–E138CrossRef
    37.Qin J, Cao M, Li N, Hu C (2011) Graphene-wrapped WO3 nanoparticles with improved performances in electrical conductivity and gas sensing properties. J Mater Chem 21:17167CrossRef
    38.Cai GF, Tu JP, Zhang J, Mai YJ, Lu Y, Gu CD, Wang XL (2012) An efficient route to a porous NiO/reduced graphene oxide hybrid film with highly improved electrochromic properties. Nanoscale 4:5724–5730CrossRef
  • 作者单位:BoWen Zhao (1)
    ShuJuan Lu (1)
    Xin Zhang (1)
    Hao Wang (1)
    JingBing Liu (1)
    Hui Yan (1)

    1. The College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Electrochemistry
    Materials Science
    Physical Chemistry
    Condensed Matter
    Renewable Energy Sources
    Electrical Power Generation and Transmission
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1862-0760
文摘
The porous WO3/reduced graphene oxide (rGO) composite films are prepared on indium–tin oxide (ITO) glass by sol-gel method. The mixture sol combines peroxotungstic acid solution with rGO dispersion reduced by ethylene glycol (EG). The excessive EG and other organic additives are subsequently removed by annealing, which leads to the formation of porous structure. Compared with pure WO3 film, WO3/rGO composite film shows improved electrochromic performance because of enhanced double insertion/extraction of ions and electrons. It realizes a large optical modulation (64.2 % at 633 nm), fast switching speed (9.5 s for coloration and 4.5 s for bleaching), good cycling stability as well as reversibility. Keywords Tungsten oxide Graphene Composite film Electrochromic

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700