用户名: 密码: 验证码:
Establishment of real-time quantitative reverse transcription polymerase chain reaction assay for transcriptional analysis of duck enteritis virus UL55 gene
详细信息    查看全文
  • 作者:Ying Wu (1)
    Anchun Cheng (1) (2) (3)
    Mingshu Wang (1) (2) (3)
    Shunchuan Zhang (1)
    Dekang Zhu (1) (2)
    Renyong Jia (1) (2) (3)
    Qihui Luo (3)
    Zhengli Chen (3)
    Xiaoyue Chen (1) (2)
  • 刊名:Virology Journal
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:8
  • 期:1
  • 全文大小:2136KB
  • 参考文献:1. Sandhu TS, Metwally SA: / Duck Virus Enteritis (Duck Plague). 12th edition. Singapore: Blackwell; 2008.
    2. Baudet E: Een sterfte onder eenden in Nederland, veroorzaakt door een filtreerbaar virus (vogelpest). / Tijdschr Diergeneesk 1923, 50:455-59.
    3. Fauquet C, Mayo M, Maniloff J, Desselberger U, Ball L: Virus taxonomy: VIIIth report of the International Committee on Taxonomy of Viruses. 2005.
    4. Shawky S, Sandhu T, Shivaprasad H: Pathogenicity of a low-virulence duck virus enteritis isolate with apparent immunosuppressive ability. / Avian diseases 2000,44(3):590-99. CrossRef
    5. Liu F, Ma B, Zhao Y, Zhang Y, Wu YH, Liu X, Wang J: Characterization of the gene encoding glycoprotein C of duck enteritis virus. / Virus Genes 2008, 37:328-32. CrossRef
    6. St hlberg A, Bengtsson M: Single-cell gene expression profiling using reverse transcription quantitative real-time PCR. / Methods 2010,50(4):282-88. CrossRef
    7. Borgwardt K, Vishwanathan S, Kriegel H: Class prediction from time series gene expression profiles using dynamical systems kernels. 2006.
    8. Yan H, Liou R: Selection of internal control genes for real-time quantitative RT-PCR assays in the oomycete plant pathogen Phytophthora parasitica. / Fungal Genetics and Biology 2006,43(6):430-38. CrossRef
    9. Cook N, Kleinig T, Heuvel C, Vink R: Reference genes for normalising gene expression data in collagenase-induced rat intracerebral haemorrhage. / BMC Molecular Biology 2010,11(1):7. CrossRef
    10. Bustin S, Nolan T: Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. / Journal of biomolecular techniques: JBT 2004,15(3):155.
    11. Bustin S, Mueller R: Real-time reverse transcription PCR (qRT-PCR) and its potential use in clinical diagnosis. / Clinical Science 2005, 109:365-79. CrossRef
    12. Bustin S: Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. / Journal of molecular endocrinology 2000,25(2):169. CrossRef
    13. Bustin S, Benes V, Nolan T, Pfaffl M: Quantitative real-time RT-PCR-a perspective. / Journal of molecular endocrinology 2005,34(3):597. CrossRef
    14. Amann R, Fuchs B, Behrens S: The identification of microorganisms by fluorescence in situ hybridisation. / Current Opinion in Biotechnology 2001,12(3):231-36. CrossRef
    15. WANG T, Brown M: mRNA quantification by real time TaqMan polymerase chain reaction: validation and comparison with RNase protection. / Analytical biochemistry 1999,269(1):198-01. CrossRef
    16. Pirnay J, De Vos D, Mossialos D, Vanderkelen A, Cornelis P, Zizi M: Analysis of the Pseudomonas aeruginosa oprD gene from clinical and environmental isolates. / Environmental Microbiology 2002,4(12):872-82. CrossRef
    17. Zou Q, Sun K, Cheng A, Wang M, Xu C, Zhu D, Jia R, Luo Q, Zhou Y, Chen Z, / et al.: Detection of anatid herpesvirus 1 gC gene by TaqManTM fluorescent quantitative real-time PCR with specific primers and probe. / VirologyJournal 2010.
    18. Yamada H, Jiang Y, Oshima S, Daikoku T, Yamashita Y, Tsurumi T, Nishiyama Y: Characterization of the UL55 gene product of herpes simplex virus type 2. / J Gen Virol 1998,79(8):1989-995.
    19. Loret S, Guay G, Lippe R: Comprehensive characterization of extracellular herpes simplex virus type 1 virions. / Journal of virology 2008,82(17):8605. CrossRef
    20. McGeoch D, Dalrymple M, Davison A, Dolan A, Frame M, McNab D, Perry L, Scott J, Taylor P: The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. / Journal of General Virology 1988,69(7):1531. CrossRef
    21. Wu Y, Cheng A, Wang M, Zhu D, Jia R, Cui H, Luo Q, Wang Y, Xu Z, Chen Z: Molecular Characterization Analysis of Newly Identified Duck Enteritis Virus UL55 Gene. 2010, 1-.
    22. Yang JL, Cheng AC, Wang MS, Pan KC, Li M, Guo YF, Li CF, Zhu DK, Chen XY: Development of a fluorescent quantitative real-time polymerase chain reaction assay for the detection of Goose parvovirus in vivo. / mortality 2009, 1:4-.
    23. Guo Yufei, Cheng Anchun, Wang Mingshu, Shen Chanjuan, Jia Renyong, Chen Shun, Zhang Na: Development of TaqMan ? MGB fluorescent real-time PCR assay for the detection of anatid herpesvirus 1. / Virology Journal 2009,6(71):8.
    24. Dheda K, Huggett J, Bustin S, Johnson M, Rook G, Zumla A: Validation of housekeeping genes for normalizing RNA expression in real-time PCR. / Biotechniques 2004, 37:112-19.
    25. Chang H, Cheng A, Wang M, Zhu D, Jia R, Liu F, Chen Z, Luo Q, Chen X, Zhou Y: Cloning, expression and characterization of gE protein of Duck plague virus. / Virology Journal 2010,7(1):120. CrossRef
    26. Cheng A, Wang M, Wen M, Zhou W, Guo Y, Jia R, Xu C, Yuan G, Liu Y: Construction of duck enteritis virus gene libraries and discovery, cloning and identification of viral nucleocapsid protein gene. / High Technol Lett 2006,16(9):948-53.
    27. SandraPrepens KA, FabianLeendertz , AndreasNitsche , BernhardEhlers* : a: Discovery of herpesviruses in multi-infected primates using locked nucleic acids (LNA) and a bigenic PCR approach.
    28. Giulietti A, Overbergh L, Valckx D, Decallonne B, Bouillon R, Mathieu C: An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. / Methods 2001,25(4):386-01. CrossRef
    29. Levin R: The application of real-time PCR to food and agricultural systems. A review. / Food Biotechnology 2005,18(1):97-33. CrossRef
    30. Mackay IM, Arden KE, Nitsche A: Real-time PCR in virology. / Nucleic acids research 2002,30(6):1292. CrossRef
    31. Livak K, Schmittgen T: Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta] CT method. / Methods 2001,25(4):402-08. CrossRef
    32. Bustin S: Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. / Journal of molecular endocrinology 2002,29(1):23. CrossRef
    33. Nolan T, Hands R, Bustin S: Quantification of mRNA using real-time RT-PCR. / Nature protocols 2006,1(3):1559-582. CrossRef
    34. Shen A, Ma G, Cheng A, Wang M, Luo D, Lu L, Zhou T, Zhu D, Luo Q, Jia R: Transcription phase, protein characteristics of DEV UL 45 and prokaryotic expression, antibody preparation of the UL 45 des-transmembrane domain. / Virology Journal 2010,7(1):232. CrossRef
    35. Lee P, Sladek R, Greenwood C, Hudson T: Control genes and variability: absence of ubiquitous reference transcripts in diverse mammalian expression studies. / Genome Research 2002,12(2):292. CrossRef
    36. Jeon S, Allen-Hoffmann B, Lambert P: Integration of human papillomavirus type 16 into the human genome correlates with a selective growth advantage of cells. / Journal of virology 1995,69(5):2989.
    37. Morrison TB, Weis JJ, Wittwer CT: Quantification of low-copy transcripts by continuous SYBR(R) Green I monitoring during amplification. / Biotechniques 1998,24(6):954-62.
    38. Lekanne Deprez R, Fijnvandraat A, Ruijter J, Moorman A: Sensitivity and accuracy of quantitative real-time polymerase chain reaction using SYBR green I depends on cDNA synthesis conditions. / Analytical biochemistry 2002,307(1):63-9. CrossRef
    39. Sharkey F, Banat I, Marchant R: Detection and quantification of gene expression in environmental bacteriology. / Applied and environmental microbiology 2004,70(7):3795. CrossRef
    40. Bengtsson M, Karlsson H, Westman G, Kubista M: A new minor groove binding asymmetric cyanine reporter dye for real ? \time PCR. / Nucleic acids research 2003,31(8):e45. CrossRef
    41. iko , Bukovsk"¢ A, Koppel J: Relative quantification of mRNA: comparison of methods currently used for real-time PCR data analysis. / BMC Molecular Biology 2007,8(1):113. CrossRef
    42. Lian B, Xu C, Cheng A, Wang M, Zhu D, Luo Q, Jia R, Bi F, Chen Z, Zhou Y: Identification and characterization of duck plague virus glycoprotein C gene and gene product. / Virology Journal 2010,7(1):349. CrossRef
    43. Beal M, Krishnamurthy P: Gene expression time course clustering with countably infinite hidden Markov models. / 2006 Citeseer; 2006
    44. McGeoch D, Rixon F, Davison A: Topics in herpesvirus genomics and evolution. / Virus Research 2006,117(1):90-04. CrossRef
  • 作者单位:Ying Wu (1)
    Anchun Cheng (1) (2) (3)
    Mingshu Wang (1) (2) (3)
    Shunchuan Zhang (1)
    Dekang Zhu (1) (2)
    Renyong Jia (1) (2) (3)
    Qihui Luo (3)
    Zhengli Chen (3)
    Xiaoyue Chen (1) (2)

    1. Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, China
    2. Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, 46 Xinkang Road, Ya’an, Sichuan, 625014, China
    3. Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, China
  • ISSN:1743-422X
文摘
Background Real-time quantitative reverse transcription polymerase chain reaction assay (qRT-PCR) has become the benchmark for detection and quantification of target gene expression level and been utilized increasingly in detection of viral load and therapy monitoring. The dynamic transcription variation of duck enteritis virus UL55 gene during the life cycle of duck enteritis virus in infected cells has not been reported yet. Results The newly identified duck enteritis virus UL55 gene was amplified and cloned into pMD18-T vector after digestion to generate a recombinant plasmid pMD18-T/UL55 for the establishment of qRT-PCR as standard DNA. The results of agarose gel electrophoresis and melting curve analysis demonstrated the primers we designed for qRT-PCR were specific and available. We used β-actin as a reference gene for normalization and established two standard curves based on pMD18-T/UL55 and pMD18-T/β-actin successfully. Based on that, the transcriptional analysis of DEV UL55 gene was performed, and the result suggested the expression of UL55 mRNA was at a low level from 0 to 8 h post-infection(p.i.), then accumulated quickly since 12 h p.i. and peaked at 36 h p.i., it can be detected till 60 h p.i.. Nucleic acid inhibition test was carried out for analyzing a temporal regulation condition of DEV UL55 gene, result revealed that it was sensitive to ganciclovir. Synthesis procedures of DEV UL55 gene can be inhibited by ganciclovir. Conclusions The method we established in this paper can provide quantitative values reflecting the amounts of measured mRNA in samples. It's available for detection and quantification, also can be used in DEV diagnosis. The DEV UL55 gene was produced most abundantly during the late phase of replication in DEV-infected cells and the transcription of it depended on the synthesized DNA. DEV UL55 gene is a γ2 gene which occurs last and have a strict requirement for viral DNA synthesis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700