用户名: 密码: 验证码:
miR-22 targets the 3-UTR of HMGB1 and inhibits the HMGB1-associated autophagy in osteosarcoma cells during chemotherapy
详细信息    查看全文
  • 作者:Xuefeng Li (1)
    Sijia Wang (2)
    Yan Chen (3)
    Guifeng Liu (4)
    Xiaoyu Yang (5)
  • 关键词:miR ; 22 ; HMGB1 ; Autophagy ; Osteosarcoma cells ; Chemotherapy
  • 刊名:Tumor Biology
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:35
  • 期:6
  • 页码:6021-6028
  • 全文大小:
  • 参考文献:1. Ottaviani G, Jaffe N. The epidemiology of osteosarcoma. Cancer Treat Res. 2009;152:3-3. CrossRef
    2. Provisor AJ, Ettinger LJ, Nachman JB, Krailo MD, Makley JT, Yunis EJ, et al. Treatment of nonmetastatic osteosarcoma of the extremity with preoperative and postoperative chemotherapy: a report from the children’s cancer group. J Clin Oncol Off J Am Soc Clin Oncol. 1997;15:76-4.
    3. Goorin AM, Schwartzentruber DJ, Devidas M, Gebhardt MC, Ayala AG, Harris MB, et al. Pediatric oncology G: presurgical chemotherapy compared with immediate surgery and adjuvant chemotherapy for nonmetastatic osteosarcoma: pediatric oncology group study pog-8651. J Clin Oncol Off J Am Soc Clin Oncol. 2003;21:1574-0. CrossRef
    4. Wittig JC, Bickels J, Priebat D, Jelinek J, Kellar-Graney K, Shmookler B, et al. Osteosarcoma: a multidisciplinary approach to diagnosis and treatment. Am Fam Physician. 2002;65:1123-2.
    5. Rosen G, Caparros B, Groshen S, Nirenberg A, Cacavio A, Marcove RC, et al. Primary osteogenic sarcoma of the femur: a model for the use of preoperative chemotherapy in high risk malignant tumors. Cancer Investig. 1984;2:181-2. CrossRef
    6. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451:1069-5. CrossRef
    7. White E, DiPaola RS. The double-edged sword of autophagy modulation in cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2009;15:5308-6.
    8. Mathew R, Karantza-Wadsworth V, White E. Role of autophagy in cancer. Nat Rev Cancer. 2007;7:961-. CrossRef
    9. Livesey KM, Tang D, Zeh HJ, Lotze MT. Autophagy inhibition in combination cancer treatment. Curr Opin Investig Drugs. 2009;10:1269-9.
    10. Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol. 2005;5:331-2. CrossRef
    11. Tang D, Kang R, Zeh 3rd HJ, Lotze MT. High-mobility group box 1, oxidative stress, and disease. Antioxid Redox Signal. 2011;14:1315-5. CrossRef
    12. Tang D, Kang R, Zeh 3rd HJ, Lotze MT. High-mobility group box 1 and cancer. Biochim Biophys Acta. 2010;1799:131-0. CrossRef
    13. Tang D, Kang R, Livesey KM, Cheh CW, Farkas A, Loughran P, et al. Endogenous HMGB1 regulates autophagy. J Cell Biol. 2010;190:881-2. CrossRef
    14. Tang D, Kang R, Livesey KM, Kroemer G, Billiar TR, Van Houten B, et al. High-mobility group box 1 is essential for mitochondrial quality control. Cell Metab. 2011;13:701-1. CrossRef
    15. Liu L, Yang M, Kang R, Wang Z, Zhao Y, Yu Y, et al. HMGB1-induced autophagy promotes chemotherapy resistance in leukemia cells. Leukemia. 2011;25:23-1. CrossRef
    16. Tang D, Kang R, Cheh CW, Livesey KM, Liang X, Schapiro NE, et al. HMGB1 release and redox regulates autophagy and apoptosis in cancer cells. Oncogene. 2010;29:5299-10. CrossRef
    17. Huang J, Ni J, Liu K, Yu Y, Xie M, Kang R, et al. HMGB1 promotes drug resistance in osteosarcoma. Cancer Res. 2012;72:230-. CrossRef
    18. Ambros V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell. 2003;113:673-. CrossRef
    19. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215-3. CrossRef
    20. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell. 2003;113:25-6. CrossRef
    21. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403:901-. CrossRef
    22. Zou Z, Wu L, Ding H, Wang Y, Zhang Y, Chen X, et al. MicroRNA-30a sensitizes tumor cells to cis-platinum via suppressing beclin 1-mediated autophagy. J Biol Chem. 2012;287:4148-6. CrossRef
    23. Hu H, Li S, Cui X, Lv X, Jiao Y, Yu F, et al. The overexpression of hypomethylated miR-663 induces chemotherapy resistance in human breast cancer cells by targeting heparin sulfate proteoglycan 2 (HSPG2). J Biol Chem. 2013;288:10973-5. CrossRef
    24. Bourguignon LY, Wong G, Earle C, Chen L. Hyaluronan-cd44v3 interaction with oct4-sox2-nanog promotes miR-302 expression leading to self-renewal, clonal formation, and cisplatin resistance in cancer stem cells from head and neck squamous cell carcinoma. J Biol Chem. 2012;287:32800-4. CrossRef
    25. Kastl L, Brown I, Schofield AC. MiRNA-34a is associated with docetaxel resistance in human breast cancer cells. Breast Cancer Res Treat. 2012;131:445-4. CrossRef
    26. Tao J, Lu Q, Wu D, Li P, Xu B, Qing W, et al. MicroRNA-21 modulates cell proliferation and sensitivity to doxorubicin in bladder cancer cells. Oncol Rep. 2011;25:1721-.
    27. Song B, Wang Y, Xi Y, Kudo K, Bruheim S, Botchkina GI, et al. Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells. Oncogene. 2009;28:4065-4. CrossRef
    28. Mukhopadhyay P, Pacher P, Das DK. MicroRNA signatures of resveratrol in the ischemic heart. Ann N Y Acad Sci. 2011;1215:109-6. CrossRef
    29. Zhu H, Wu H, Liu X, Li B, Chen Y, Ren X, et al. Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy. 2009;5:816-3.
    30. Brest P, Lapaquette P, Souidi M, Lebrigand K, Cesaro A, Vouret-Craviari V, et al. A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn’s disease. Nat Genet. 2011;43:242-. CrossRef
    31. Xiao J, Zhu X, He B, Zhang Y, Kang B, Wang Z, et al. MiR-204 regulates cardiomyocyte autophagy induced by ischemia-reperfusion through LC3-II. J Biomed Sci. 2011;18:35. CrossRef
    32. Paglin S, Hollister T, Delohery T, Hackett N, McMahill M, Sphicas E, et al. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res. 2001;61:439-4.
    33. Polioudakis D, Bhinge AA, Killion PJ, Lee BK, Abell NS, Iyer VR. A Myc-microRNA network promotes exit from quiescence by suppressing the interferon response and cell-cycle arrest genes. Nucleic Acids Res. 2013;41:2239-4. CrossRef
    34. Marina N, Gebhardt M, Teot L, Gorlick R. Biology and therapeutic advances for pediatric osteosarcoma. Oncologist. 2004;9:422-1. CrossRef
    35. Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53:615-7. CrossRef
    36. Duan Z, Choy E, Harmon D, Yang C, Ryu K, Schwab J, et al. Insulin-like growth factor-I receptor tyrosine kinase inhibitor cyclolignan picropodophyllin inhibits proliferation and induces apoptosis in multidrug resistant osteosarcoma cell lines. Mol Cancer Ther. 2009;8:2122-0. CrossRef
    37. He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 2009;43:67-3. CrossRef
    38. Yang Z, Klionsky DJ. Eaten alive: a history of macroautophagy. Nat Cell Biol. 2010;12:814-2. CrossRef
    39. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta c (t)) method. Methods. 2001;25:402-. CrossRef
    40. Kim SW, Li Z, Moore PS, Monaghan AP, Chang Y, Nichols M, et al. A sensitive non-radioactive northern blot method to detect small RNAs. Nucleic Acids Res. 2010;38:e98. CrossRef
  • 作者单位:Xuefeng Li (1)
    Sijia Wang (2)
    Yan Chen (3)
    Guifeng Liu (4)
    Xiaoyu Yang (5)

    1. Department of Anesthesiology, China-Japan Union Hospital, Jilin University, Changchun, China
    2. China-Japan Union Hospital, Jilin University, Changchun, China
    3. Department of Endocrinology, Second Hospital, Jilin University, Changchun, China
    4. Department of Radiology, China-Japan Union Hospital, Jilin University, No. 126 of Xiantai street, Erdao District, 130033, Changchun, China
    5. Department of Orthopedics, China-Japan Union Hospital, Jilin University, No. 126 of Xiantai street, Erdao District, 130033, Changchun, China
  • ISSN:1423-0380
文摘
Osteosarcoma is the most common malignant bone tumor for children and adolescents, and the frequent acquisition of drug-resistant phenotypes and the occurrence of “secondary malignancies-are often associated with chemotherapy and are significant obstacles to achieving favorable outcomes. Thus, it is urgent to identify the molecular mechanisms underlying the chemoresistance of osteosarcoma. In this study, we showed that miR-22 and high-mobility group box 1 (HMGB1) were deregulated in osteosarcoma cells, post-chemotherapy; the upregulated HMGB1 mediated autophagy and contributed to chemotherapy resistance in osteosarcoma in vitro. However, possibly as a compensatory effect, miR-22 was also upregulated during the chemotherapy, and the overexpressed miR-22 targeted the 3-UTR of HMGB1 and inhibits the HMGB1-promoted autophagy. Our study suggests a complexity in the regulation of autophagy by miR-22 and HMGB1 during chemotherapy resistance in osteosarcoma. These results reveal novel potential role of miR-22 against chemotherapy resistance during the treatment of osteosarcoma.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700