用户名: 密码: 验证码:
Airborne mineral dust measurement using an integrated microfluidic device
详细信息    查看全文
  • 作者:Fan Liu ; Yu Han ; Li Du ; Pengfei Huang ; Jiang Zhe
  • 关键词:Mineral dust measurement ; Size distribution ; Impinger ; Multichannel Coulter counter
  • 刊名:Microfluidics and Nanofluidics
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:20
  • 期:1
  • 全文大小:821 KB
  • 参考文献:Begin R, Cantin A, Masse S (1989) Recent advances in the pathogenesis and clinical assessment of mineral dust pneumoconioses: asbestosis, silicosis and coal pneumoconiosis. Eur Respir J 2:988–1001
    Berge LI, Jossang T, Feder J (1990) Off-axis response for particles passing through long apertures in Coulter-type counters. Meas Sci Technol 1:471–474. doi:10.​1088/​0957-0233/​1/​6/​001 CrossRef
    Buonanno G, Dell’Isola M, Stabile L, Viola A (2011) Critical aspects of the uncertainty budget in the gravimetric PM measurements. Measurement 44:139–147. doi:10.​1016/​j.​measurement.​2010.​09.​037 CrossRef
    Chung A, Chang DPY, Kleeman MJ et al (2001) Comparison of real-time instruments used to monitor airborne particulate matter. J Air Waste Manage Assoc 51:109–120. doi:10.​1080/​10473289.​2001.​10464254 CrossRef
    Davidson CI, Phalen RF, Solomon PA (2005) Airborne particulate matter and human health: a review. Aerosol Sci Technol 39:737–749. doi:10.​1080/​0278682050019134​8 CrossRef
    DeBlois RW (1970) Counting and sizing of submicron particles by the resistive pulse technique. Rev Sci Instrum 41:909. doi:10.​1063/​1.​1684724 CrossRef
    Duzgoren-Aydin NS (2008) Health effects of atmospheric particulates: a medical geology perspective. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 26:1–39. doi:10.​1080/​1059050080190734​0 CrossRef
    Giugliano M, Lonati G, Butelli P et al (2005) Fine particulate (PM2.5-PM1) at urban sites with different traffic exposure. Atmos Environ 39:2421–2431. doi:10.​1016/​j.​atmosenv.​2004.​06.​050 CrossRef
    Grinshpun SA, Willeke K, Ulevicius V et al (1997) Effect of impaction, bounce and reaerosolization on the collection efficiency of impingers. Aerosol Sci Technol 26:326–342. doi:10.​1080/​0278682970896543​4 CrossRef
    Guthrie GD (1997) Mineral properties and their contributions to particle toxicity. Environ Health Perspect 105(Suppl 5):1003–1011. doi:10.​1289/​ehp.​97105s51003 CrossRef
    Hauck H, Berner A, Gomiscek B et al (2004) On the equivalence of gravimetric PM data with TEOM and beta-attenuation measurements. J Aerosol Sci 35:1135–1149. doi:10.​1016/​j.​jaerosci.​2004.​04.​004 CrossRef
    Houghton ME, Amidon GE (1992) Microscopic characterization of particle size and shape: an inexpensive and versatile method. Pharm Res 9:856–859CrossRef
    Kauffmann F, Drouet D, Lellouch J, Brille D (1982) Occupational exposure and 12-year spirometric changes among Paris area workers. Br J Ind Med 39:221–232. doi:10.​1136/​oem.​39.​3.​221
    Kujundzic E, Hernandez M, Miller SL (2006) Particle size distributions and concentrations of airborne endotoxin using novel collection methods in homes during the winter and summer seasons. Indoor Air 16:216–226. doi:10.​1111/​j.​1600-0668.​2005.​00419.​x CrossRef
    Lin X, Reponen TA, Willeke K et al (1999) Long-term sampling of airborne bacteria and fungi into a non-evaporating liquid. Atmos Environ 33:4291–4298. doi:10.​1016/​S1352-2310(99)00169-7 CrossRef
    Liu Y, Daum PH (2000) The effect of refractive index on size distributions and light scattering coefficients derived from optical particle counters. J Aerosol Sci 31:945–957. doi:10.​1016/​S0021-8502(99)00573-X CrossRef
    López JM, Callén MS, Murillo R et al (2005) Levels of selected metals in ambient air PM10 in an urban site of Zaragoza (Spain). Environ Res 99:58–67. doi:10.​1016/​j.​envres.​2005.​01.​007 CrossRef
    Macias ES, Husar RB (1976) Atmospheric particulate mass measurement with beta attenuation mass monitor. Environ Sci Technol 10:904–907. doi:10.​1021/​es60120a015 CrossRef
    Matheson MC, Benke G, Raven J et al (2005) Biological dust exposure in the workplace is a risk factor for chronic obstructive pulmonary disease. Thorax 60:645–651. doi:10.​1136/​thx.​2004.​035170 CrossRef
    Maynard AD, Kuempel ED (2005) Airborne nanostructured particles and occupational health. J Nanoparticle Res 7:587–614. doi:10.​1007/​s11051-005-6770-9 CrossRef
    McMurry P (2000) A review of atmospheric aerosol measurements. Atmos Environ 34:1959–1999. doi:10.​1016/​S1352-2310(99)00455-0 CrossRef
    Miljevic B, Modini RL, Bottle SE, Ristovski ZD (2009) On the efficiency of impingers with fritted nozzle tip for collection of ultrafine particles. Atmos Environ 43:1372–1376. doi:10.​1016/​j.​atmosenv.​2008.​12.​001 CrossRef
    Müller T, Schladitz A, Kandler K, Wiedensohler A (2011) Spectral particle absorption coefficients, single scattering albedos and imaginary parts of refractive indices from ground based in situ measurements at Cape Verde Island during SAMUM-2. Tellus Ser B Chem Phys Meteorol 63:573–588. doi:10.​1111/​j.​1600-0889.​2011.​00572.​x CrossRef
    Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839. doi:10.​1289/​ehp.​7339 CrossRef MATH
    Occupational Safety & Health Administration (2006) Toxic and hazardous substances. In: Occupational Safety and Health Standards, 1910.1000
    Parks CG, Conrad K, Cooper GS (1999) Occupational exposure to crystalline silica and autoimmune disease. Environ Health Perspect 107(Suppl 5):793–802. doi:10.​1289/​ehp.​99107s5793 CrossRef
    Patashnick H, Rupprecht EG (1991) Continuous PM-10 measurements using the tapered element oscillating microbalance. J Air Waste Manage Assoc 41:1079–1083. doi:10.​1080/​10473289.​1991.​10466903 CrossRef
    Peters A, Wichmann HE, Tuch T et al (1997) Respiratory effects are associated with the number of ultrafine particles. Am J Respir Crit Care Med 155:1376–1383. doi:10.​1164/​ajrccm.​155.​4.​9105082 CrossRef
    Rogers CF, Watson JG, Day D, Oraltay RG (1998) Real-time liquid water mass measurement for airborne particulates. Aerosol Sci Technol 29:557–562. doi:10.​1080/​0278682980896559​0 CrossRef
    Rosenberg PD, Dean AR, Williams PI et al (2012) Particle sizing calibration with refractive index correction for light scattering optical particle counters and impacts upon PCASP and CDP data collected during the Fennec campaign. Atmos Meas Tech 5:1147–1163. doi:10.​5194/​amt-5-1147-2012 CrossRef
    Ruppecht E, Meyer M, Patashnick H (1992) The tapered element oscillating microbalance as a tool for measuring ambient particulate concentrations in real time. J Aerosol Sci 23:635–638. doi:10.​1016/​0021-8502(92)90492-E CrossRef
    Stier J, Quinten M (1998) Simple refractive index correction for the optical particle counter PCS 2000 by Palas. J Aerosol Sci 29:223–225. doi:10.​1016/​S0021-8502(97)00459-X CrossRef
    Takahashi K, Minoura H, Sakamoto K (2008) Examination of discrepancies between beta-attenuation and gravimetric methods for the monitoring of particulate matter. Atmos Environ 42:5232–5240. doi:10.​1016/​j.​atmosenv.​2008.​02.​057 CrossRef
    Takamura T, Sasano Y, Hayasaka T (1994) Tropospheric aerosol optical properties derived from lidar, sun photometer, and optical particle counter measurements. Appl Opt 33:7132–7140. doi:10.​1364/​AO.​33.​007132 CrossRef
    Valavanidis A, Fiotakis K, Vlachogianni T (2008) Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 26:339–362. doi:10.​1080/​1059050080249453​8 CrossRef
    Volkwein JC, Vinson RP, McWilliams LJ, Tuchman DP, Mischler SE (2004) Performance of a new personal respirable dust monitor for mine use. Report of Investigations 9663. U.S. Department of Health and Human Services, Centers for Disease Control, National Institute for Occupational Safety and Health, Pittsburgh Research Laboratory, Pittsburgh, PA, pp 1–25
    Willeke K, Lin X, Grinshpun SA (1998) Improved aerosol collection by combined impaction and centrifugal motion. Aerosol Sci Technol 28:439–456. doi:10.​1080/​0278682980896553​6 CrossRef
    Zhe J, Jagtiani A, Dutta P et al (2007) A micromachined high throughput Coulter counter for bioparticle detection and counting. J Micromech Microeng 17:304–313. doi:10.​1088/​0960-1317/​17/​2/​017 CrossRef
  • 作者单位:Fan Liu (1)
    Yu Han (1)
    Li Du (1)
    Pengfei Huang (2)
    Jiang Zhe (1) (2)

    1. Department of Mechanical Engineering, University of Akron, Akron, OH, 44325, USA
    2. College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing, 100124, China
  • 刊物类别:Engineering
  • 刊物主题:Engineering Fluid Dynamics
    Medical Microbiology
    Polymer Sciences
    Nanotechnology
    Mechanics, Fluids and Thermodynamics
    Engineering Thermodynamics and Transport Phenomena
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1613-4990
文摘
We present a new airborne mineral dust measurement instrument consisting of a high-efficiency collection system and a microfluidic multichannel Coulter counter. Simulating a complete airborne mineral dust measurement procedure, silica microparticles are uniformly dispersed into a chamber and are subsequently collected into liquid sample of a vacuum-driven impinger; the liquid sample is then pumped to and analyzed in the multichannel Coulter counter to obtain size and concentration information. The accuracy of sizing and counting capabilities of the multichannel Coulter counter is proved by testing the mixture of standard 1.0-, 2.0- and 5.0-µm microparticles. Next, soda lime glass microparticles ranging from 2 to 10 µm, as a mineral dust simulant, are collected and analyzed. Collection efficiency is demonstrated to be 94 %. Accurate size distribution and concentration of microparticles are obtained from the multichannel Coulter counter. With its simple structure and operation, the mineral dust measurement instrument provides reliable analysis results and is promising for real-time, on-site airborne mineral dust monitoring.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700