用户名: 密码: 验证码:
Diverse modes of genomic alteration in hepatocellular carcinoma
详细信息    查看全文
  • 作者:Suchit Jhunjhunwala (1)
    Zhaoshi Jiang (1)
    Eric W Stawiski (1) (2)
    Florian Gnad (1)
    Jinfeng Liu (1)
    Oleg Mayba (1)
    Pan Du (1)
    Jingyu Diao (3)
    Stephanie Johnson (4)
    Kwong-Fai Wong (5)
    Zhibo Gao (6)
    Yingrui Li (6)
    Thomas D Wu (1)
    Sharookh B Kapadia (3)
    Zora Modrusan (2)
    Dorothy M French (4)
    John M Luk (5) (7) (8)
    Somasekar Seshagiri (2)
    Zemin Zhang (1)

    1. Department of Bioinformatics and Computational Biology
    ; Genentech Inc. ; South San Francisco ; CA ; 94080 ; USA
    2. Department of Molecular Biology
    ; Genentech Inc. ; South San Francisco ; CA ; 94080 ; USA
    3. Department of Infectious diseases
    ; Genentech Inc. ; South San Francisco ; CA ; 94080 ; USA
    4. Department of Pathology
    ; Genentech Inc. ; South San Francisco ; CA ; 94080 ; USA
    5. Department of Surgery
    ; University of Hong Kong ; Pokfulam ; Hong Kong
    6. BGI-Shenzhen
    ; Shenzhen ; 518083 ; China
    7. Department of Pharmacology
    ; National University of Singapore ; Singapore ; 117597 ; Singapore
    8. Institute of Molecular and Cell Biology
    ; A*STAR ; 61 Biopolis Drive ; Singapore ; 138673 ; Singapore
  • 刊名:Genome Biology
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:15
  • 期:8
  • 全文大小:2,070 KB
  • 参考文献:1. Altekruse, SF, McGlynn, KA, Reichman, ME (2009) Hepatocellular Carcinoma Incidence, Mortality, and Survival Trends in the United States From 1975 to 2005. JCO 27: pp. 1485-1491 CrossRef
    2. Zhang, Z (2012) Genomic landscape of liver cancer. Nat Genet 44: pp. 1075-1077 CrossRef
    3. Jiang, Z, Jhunjhunwala, S, Liu, J, Haverty, PM, Kennemer, MI, Guan, Y, Lee, W, Carnevali, P, Stinson, J, Johnson, S, Diao, J, Yeung, S, Jubb, A, Ye, W, Wu, TD, Kapadia, SB, Sauvage, FJD, Gentleman, RC, Stern, HM, Seshagiri, S, Pant, KP, Modrusan, Z, Ballinger, DG, Zhang, Z (2012) The effects of hepatitis B virus integration into the genomes of hepatocellular carcinoma patients. Genome Res 22: pp. 593-601 CrossRef
    4. Sung, W-K, Zheng, H, Li, S, Chen, R, Liu, X, Li, Y, Lee, NP, Lee, WH, Ariyaratne, PN, Tennakoon, C, Mulawadi, FH, Wong, KF, Liu, AM, Poon, RT, Fan, ST, Chan, KL, Gong, Z, Hu, Y, Lin, Z, Wang, G, Zhang, Q, Barber, TD, Chou, W-C, Aggarwal, A, Hao, K, Zhou, W, Zhang, C, Hardwick, J, Buser, C, Xu, J (2012) Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat Genet 44: pp. 765-769 CrossRef
    5. Fujimoto, A, Totoki, Y, Abe, T, Boroevich, KA, Hosoda, F, Nguyen, HH, Aoki, M, Hosono, N, Kubo, M, Miya, F, Arai, Y, Takahashi, H, Shirakihara, T, Nagasaki, M, Shibuya, T, Nakano, K, Watanabe-Makino, K, Tanaka, H, Nakamura, H, Kusuda, J, Ojima, H, Shimada, K, Okusaka, T, Ueno, M, Shigekawa, Y, Kawakami, Y, Arihiro, K, Ohdan, H, Gotoh, K, Ishikawa, O (2012) Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat Genet 44: pp. 760-764 CrossRef
    6. Guichard, C, Amaddeo, G, Imbeaud, S, Ladeiro, Y, Pelletier, L, Maad, IB, Calderaro, J, Bioulac-Sage, P, Letexier, M, Degos, F, Cl茅ment, B, Balabaud, C, Chevet, E, Laurent, A, Couchy, G, Letouz茅, E, Calvo, F, Zucman-Rossi, J (2012) Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet 44: pp. 694-698 CrossRef
    7. Akhavan, A, Griffith, OL, Soroceanu, L, Leonoudakis, D, Luciani-Torres, MG, Daemen, A, Gray, JW, Muschler, JL (2012) Loss of cell-surface laminin anchoring promotes tumor growth and is associated with poor clinical outcomes. Cancer Res 72: pp. 2578-2588 CrossRef
    8. Parsons, DW, Jones, S, Zhang, X, Lin, JC-H, Leary, RJ, Angenendt, P, Mankoo, P, Carter, H, Siu, I-M, Gallia, GL, Olivi, A, McLendon, R, Rasheed, BA, Keir, S, Nikolskaya, T, Nikolsky, Y, Busam, DA, Tekleab, H, Diaz, LA, Hartigan, J, Smith, DR, Strausberg, RL, Marie, SKN, Shinjo, SMO, Yan, H, Riggins, GJ, Bigner, DD, Karchin, R, Papadopoulos, N, Parmigiani, G (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321: pp. 1807-1812 CrossRef
    9. Wang, P, Dong, Q, Zhang, C, Kuan, P-F, Liu, Y, Jeck, WR, Andersen, JB, Jiang, W, Savich, GL, Tan, T-X, Auman, JT, Hoskins, JM, Misher, AD, Moser, CD, Yourstone, SM, Kim, JW, Cibulskis, K, Getz, G, Hunt, HV, Thorgeirsson, SS, Roberts, LR, Ye, D, Guan, K-L, Xiong, Y, Qin, L-X, Chiang, DY (2013) Mutations in isocitrate dehydrogenase 1 and 2 occur frequently in intrahepatic cholangiocarcinomas and share hypermethylation targets with glioblastomas. Oncogene 32: pp. 3091-3100 CrossRef
    10. Burns, MB, Lackey, L, Carpenter, MA, Rathore, A, Land, AM, Leonard, B, Refsland, EW, Kotandeniya, D, Tretyakova, N, Nikas, JB, Yee, D, Temiz, NA, Donohue, DE, McDougle, RM, Brown, WL, Law, EK, Harris, RS (2013) APOBEC3B is an enzymatic source of mutation in breast cancer. Nature 494: pp. 366-370 CrossRef
    11. Taylor, BJ, Nik-Zainal, S, Wu, YL, Stebbings, LA, Raine, K, Campbell, PJ, Rada, C, Stratton, MR, Neuberger, MS (2013) DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3A in breast cancer kataegis. eLife 2: pp. e00534 CrossRef
    12. Zhao, S, Lin, Y, Xu, W, Jiang, W, Zha, Z, Wang, P, Yu, W, Li, Z, Gong, L, Peng, Y, Ding, J, Lei, Q, Guan, K-L, Xiong, Y (2009) Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1伪. Science 324: pp. 261-265 CrossRef
    13. Dey, A, Seshasayee, D, Noubade, R, French, DM, Liu, J, Chaurushiya, MS, Kirkpatrick, DS, Pham, VC, Lill, JR, Bakalarski, CE, Wu, J, Phu, L, Katavolos, P, LaFave, LM, Abdel-Wahab, O, Modrusan, Z, Seshagiri, S, Dong, K, Lin, Z, Balazs, M, Suriben, R, Newton, K, Hymowitz, S, Garcia-Manero, G, Martin, F, Levine, RL, Dixit, VM (2012) Loss of the tumor suppressor BAP1 causes myeloid transformation. Science 337: pp. 1541-1546 CrossRef
    14. Carbone, M, Yang, H, Pass, HI, Krausz, T, Testa, JR, Gaudino, G (2013) BAP1 and cancer. Nat Rev Cancer 13: pp. 153-159 CrossRef
    15. Larsen, CN, Price, JS, Wilkinson, KD (1996) Substrate binding and catalysis by ubiquitin C-terminal hydrolases: identification of two active site residues. Biochemistry 35: pp. 6735-6744 CrossRef
    16. Samuels, Y, Wang, Z, Bardelli, A, Silliman, N, Ptak, J, Szabo, S, Yan, H, Gazdar, A, Powell, SM, Riggins, GJ, Willson, JKV, Markowitz, S, Kinzler, KW, Vogelstein, B, Velculescu, VE (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science 304: pp. 554-554 CrossRef
    17. Zhao, JJ, Liu, Z, Wang, L, Shin, E, Loda, MF, Roberts, TM (2005) The oncogenic properties of mutant p110伪 and p110尾 phosphatidylinositol 3-kinases in human mammary epithelial cells. Proc Natl Acad Sci U S A 102: pp. 18443-18448 CrossRef
    18. Nagaya, T, Nakamura, T, Tokino, T, Tsurimoto, T, Imai, M, Mayumi, T, Kamino, K, Yamamura, K, Matsubara, K (1987) The mode of hepatitis B virus DNA integration in chromosomes of human hepatocellular carcinoma. Genes Dev 1: pp. 773-782 CrossRef
    19. Brechot, C, Pourcel, C, Louise, A, Rain, B, Tiollais, P (1980) Presence of integrated hepatitis B virus DNA sequences in cellular DNA of human hepatocellular carcinoma. Nature 286: pp. 533-535 CrossRef
    20. Kim, C-M, Koike, K, Saito, I, Miyamura, T, Jay, G (1991) HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature 351: pp. 317-320 CrossRef
    21. Sunyach, C, Chassot, S, Jamard, C, Kay, A, Trepo, C, Cova, L (1997) In VivoSelection of duck hepatitis B virus pre-S variants which escape from neutralization. Virology 234: pp. 291-299 CrossRef
    22. Yeung, P, Wong, DK-H, Lai, C-L, Fung, J, Seto, W-K, Yuen, M-F (2011) Association of hepatitis B virus pre-S deletions with the development of hepatocellular carcinoma in chronic hepatitis B. J Infect Dis 203: pp. 646-654 CrossRef
    23. Buseman, CM, Wright, WE, Shay, JW (2012) Is telomerase a viable target in cancer?. Mutat Res 730: pp. 90-97 CrossRef
    24. Ni, R, Shen, X, Qian, X, Yu, C, Haiyan, WU, Xia, GAO (2012) Detection of differentially expressed genes and association with clinicopathological features in laryngeal squamous cell carcinoma. Oncol Lett 4: pp. 1354-1360
    25. Mefford, D, Mefford, J (2012) Stromal genes add prognostic information to proliferation and histoclinical markers: a basis for the next generation of breast cancer gene signatures. PLoS One 7: pp. e37646 CrossRef
    26. Tung, EK-K, Mak, CK-M, Fatima, S, Lo, RC-L, Zhao, H, Zhang, C, Dai, H, Poon, RT-P, Yuen, M-F, Lai, C-L, Li, J, Luk, JM-C, Ng, IO-L (2011) Clinicopathological and prognostic significance of serum and tissue Dickkopf-1 levels in human hepatocellular carcinoma. Liver Int 31: pp. 1494-1504 CrossRef
    27. Rohle, D, Popovici-Muller, J, Palaskas, N, Turcan, S, Grommes, C, Campos, C, Tsoi, J, Clark, O, Oldrini, B, Komisopoulou, E, Kunii, K, Pedraza, A, Schalm, S, Silverman, L, Miller, A, Wang, F, Yang, H, Chen, Y, Kernytsky, A, Rosenblum, MK, Liu, W, Biller, SA, Su, SM, Brennan, CW, Chan, TA, Graeber, TG, Yen, KE, Mellinghoff, IK (2013) An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 340: pp. 626-630 CrossRef
    28. Tanaka, H, Yoshida, M, Tanimura, H, Fujii, T, Sakata, K, Tachibana, Y, Ohwada, J, Ebiike, H, Kuramoto, S, Morita, K, Yoshimura, Y, Yamazaki, T, Ishii, N, Kondoh, O, Aoki, Y (2011) The selective class I PI3K inhibitor CH5132799 targets human cancers harboring oncogenic PIK3CA mutations. Clin Cancer Res 17: pp. 3272-3281 CrossRef
    29. Spencer, VA, Costes, S, Inman, JL, Xu, R, Chen, J, Hendzel, MJ, Bissell, MJ (2011) Depletion of nuclear actin is a key mediator of quiescence in epithelial cells. J Cell Sci 124: pp. 123-132 CrossRef
    30. Lee, S, Oh, T, Chung, H, Rha, S, Kim, C, Moon, Y, Hoehn, BD, Jeong, D, Lee, S, Kim, N, Park, C, Yoo, M, An, S (2011) Identification of GABRA1 and LAMA2 as new DNA methylation markers in colorectal cancer. Int J Oncol 40: pp. 889-898
    31. Huang, FW, Hodis, E, Xu, MJ, Kryukov, GV, Chin, L, Garraway, LA (2013) Highly recurrent TERT promoter mutations in human melanoma. Science 339: pp. 957-959 CrossRef
    32. Vinagre, J, Almeida, A, P贸pulo, H, Batista, R, Lyra, J, Pinto, V, Coelho, R, Celestino, R, Prazeres, H, Lima, L, Melo, M, Rocha, AG, Preto, A, Castro, P, Castro, L, Pardal, F, Lopes, JM, Santos, LL, Reis, RM, Cameselle-Teijeiro, J, Sobrinho-Sim玫es, M, Lima, J, M谩ximo, V, Soares, P (2013) Frequency of TERT promoter mutations in human cancers. Nat Commun 4: pp. 1-6 CrossRef
    33. 釁?strong class="a-plus-plus">Cgatools., 釁?釁?[http://cgatools.sourceforge.net]
    34. 釁?strong class="a-plus-plus">69 Genomes Data., 釁?釁?[http://www.completegenomics.com/public-data/69-Genomes/]
    35. 釁?strong class="a-plus-plus">Exome Variant Server., 釁?釁?[http://evs.gs.washington.edu/EVS]
    36. Li, H, Durbin, R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: pp. 1754-1760 CrossRef
    37. DePristo, MA, Banks, E, Poplin, R, Garimella, KV, Maguire, JR, Hartl, C, Philippakis, AA, Angel, G, Rivas, MA, Hanna, M, McKenna, A, Fennell, TJ, Kernytsky, AM, Sivachenko, AY, Cibulskis, K, Gabriel, SB, Altshuler, D, Daly, MJ (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43: pp. 491-498 CrossRef
    38. Saunders, CT, Wong, WSW, Swamy, S, Becq, J, Murray, LJ, Cheetham, RK (2012) Strelka: accurate somatic small-variant calling from sequenced tumor鈥搉ormal sample pairs. Bioinformatics 28: pp. 1811-1817 CrossRef
    39. Sherry, ST, Ward, M-H, Kholodov, M, Baker, J, Phan, L, Smigielski, EM, Sirotkin, K (2001) dbSNP: the NCBI database of genetic variation. Nucl Acids Res 29: pp. 308-311 CrossRef
    40. Fu, W, O鈥機onnor, TD, Jun, G, Kang, HM, Abecasis, G, Leal, SM, Gabriel, S, Altshuler, D, Shendure, J, Nickerson, DA, Bamshad, MJ, Project, NES, Akey, JM (2013) Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants. Nature 493: pp. 216-220 CrossRef
    41. Forbes, SA, Tang, G, Bindal, N, Bamford, S, Dawson, E, Cole, C, Kok, CY, Jia, M, Ewing, R, Menzies, A, Teague, JW, Stratton, MR, Futreal, PA (2010) COSMIC (the Catalogue of Somatic Mutations in Cancer): a resource to investigate acquired mutations in human cancer. Nucleic Acids Res 38: pp. D652-D657 CrossRef
    42. Reumers, J, Rijk, P, Zhao, H, Liekens, A, Smeets, D, Cleary, J, Loo, P, Bossche, M, Catthoor, K, Sabbe, B, Despierre, E, Vergote, I, Hilbush, B, Lambrechts, D, Del-Favero, J (2012) Optimized filtering reduces the error rate in detecting genomic variants by short-read sequencing. Nat Biotechnol 30: pp. 61-68 CrossRef
    43. Du, P, Kibbe, WA, Lin, SM (2008) lumi: a pipeline for processing Illumina microarray. Bioinformatics 24: pp. 1547-1548 CrossRef
    44. Iyer, MK, Chinnaiyan, AM, Maher, CA (2011) ChimeraScan: a tool for identifying chimeric transcription in sequencing data. Bioinformatics 27: pp. 2903-2904 CrossRef
    45. 釁?strong class="a-plus-plus">European Genome-phenome Archive., 釁?釁?[http://www.ebi.ac.uk/ega/]
    46. Liver cancer - Riken, JP., 釁?釁?[https://dcc.icgc.org/projects/LIRI-JP]
    47. Kan Z, Zheng H, Liu X, Li S, Barber TD, Gong Z, Gao H, Hao K, Willard MD, Xu J, Hauptschein R, Rejto PA, Fernandez J, Wang G, Zhang Q, Wang B, Chen R, Wang J, Lee NP, Zhou W, Lin Z, Peng Z, Yi K, Chen S, Li L, Fan X, Yang J, Ye R, Ju J, Wang K, / et al: Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma. 2013, 釁?釁熲€撫厽 [www.ingenuity.com/acrg2012]
  • 刊物主题:Animal Genetics and Genomics; Human Genetics; Plant Genetics & Genomics; Microbial Genetics and Genomics; Fungus Genetics; Bioinformatics;
  • 出版者:BioMed Central
  • ISSN:1465-6906
文摘
Background Hepatocellular carcinoma (HCC) is a heterogeneous disease with high mortality rate. Recent genomic studies have identified TP53, AXIN1, and CTNNB1 as the most frequently mutated genes. Lower frequency mutations have been reported in ARID1A, ARID2 and JAK1. In addition, hepatitis B virus (HBV) integrations into the human genome have been associated with HCC. Results Here, we deep-sequence 42 HCC patients with a combination of whole genome, exome and transcriptome sequencing to identify the mutational landscape of HCC using a reasonably large discovery cohort. We find frequent mutations in TP53, CTNNB1 and AXIN1, and rare but likely functional mutations in BAP1 and IDH1. Besides frequent hepatitis B virus integrations at TERT, we identify translocations at the boundaries of TERT. A novel deletion is identified in CTNNB1 in a region that is heavily mutated in multiple cancers. We also find multiple high-allelic frequency mutations in the extracellular matrix protein LAMA2. Lower expression levels of LAMA2 correlate with a proliferative signature, and predict poor survival and higher chance of cancer recurrence in HCC patients, suggesting an important role of the extracellular matrix and cell adhesion in tumor progression of a subgroup of HCC patients. Conclusions The heterogeneous disease of HCC features diverse modes of genomic alteration. In addition to common point mutations, structural variations and methylation changes, there are several virus-associated changes, including gene disruption or activation, formation of chimeric viral-human transcripts, and DNA copy number changes. Such a multitude of genomic events likely contributes to the heterogeneous nature of HCC.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700