用户名: 密码: 验证码:
Constraints and properties of linear heat transfer relations
详细信息    查看全文
  • 作者:Tae-Ho Song
  • 关键词:Heat transfer relations ; Conductance matrix ; Diffusivity ; Reciprocal relations
  • 刊名:Journal of Mechanical Science and Technology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:30
  • 期:3
  • 页码:1377-1388
  • 全文大小:739 KB
  • 参考文献:[1]L. Onsager, Reciprocal relations in irreversible processes. I, Physical Review, 37 (1931) 405–426.
    [2]S. R. de Groot, Thermodynamics of irreversible processes, North-Holland, Amsterdam (1951) 94–162.MATH
    [3]P. Glansdorff and I. Prigogine, Thermodynamic theory of structures, stability and fluctuations, Wiley-Interscience, London (1971) 73–95.MATH
    [4]H. B. Callen, Thermodynamics and an introduction to thermostatistics, Second Ed., John Wiley & Sons, New York (1985) 307–328.MATH
    [5]H. B. G. Casimir, On Onsager’s principle of microscopic reversibility, Rev. Mod. Phys., 17 (1945) 343–350.CrossRef
    [6]J. M. Powers, On the necessity of positive semi-definite conductivity and Onsager reciprocity in modeling heat conduction in anisotropic media, ASME J. Heat Transfer, 126 (2004) 670–675.CrossRef
    [7]D. J. Evans, E. G. D. Cohen and G. P. Morriss, Probability of second law violations in shearing steady states, Physical Review Letters, 71 (1993) 2401–2404.CrossRef MATH
    [8]G. M. Wang, E. M. Sevick, E. Mittag, D. J. Searles and D. J. Evans, Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales, Physical Review Letters, 89 (2002) 050601/1-4.
    [9]R. Siegel and J. R. Howell, Thermal radiation heat transfer, Second Ed., Hemisphere, Washington D.C. (1981) 65–66.
    [10]W. C. Snyder, Z. Wan and X. Li, Thermodynamic constraints on reflectance reciprocity and Kirchhoff’s law, Applied Optics, 37 (1998) 3464–3470.CrossRef
    [11]M. N. Ozisik, Heat conduction, John Wiley & Sons, New York (1980) 611–650.
    [12]H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Second Ed., Oxford University Press, London (1959) 38–41.
    [13]E. R. G. Eckert and R. M. Drake, Analysis of heat and mass transfer, McGraw-Hill, New York (1972) 254–280.MATH
    [14]B. Gebhart, Y. Jaluria, R. L. Mahajan and B. Sammakia, Buoyancy-driven flows and transport, Hemisphere, Washington D.C. (1988) 11–39.MATH
    [15]C. V. Madhusudana and L. S. Fletcher, Contact heat transfer -the last decade, AIAA Journal, 24 (3) (1986) 510–523.MathSciNet CrossRef
    [16]F. P. Incropera, D. P. DeWitt, T. L. Bergman and A. S. Lavine, Fundamentals of heat and mass transfer, Sixth Ed., John Wiley & Sons, New York (2007) 207–212.
    [17]S. V. Patankar, Numerical heat transfer and fluid flow, Hemisphere, Washington D.C. (1980) 36–39.MATH
    [18]T. Myint-U and L. Debnath, Partial differential equations for scientists and engineers, Third Ed., North-Holland, Amsterdam (1987) 293-317.
    [19]R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge, New York (1985) 167–256, 391-486.CrossRef
    [20]M. F. Modest, Radiative heat transfer, Second Ed., Academic Press, New York (2003) 65–68, 263-271.
    [21]W. A. Fiveland, Discrete ordinates solutions of the radiative transport equation for rectangular enclosures, ASME J. Heat Transfer, 106 (1984) 699–706.CrossRef
    [22]H. C. Hottel and E. S. Cohen, Radiant heat exchange in a gas-filled enclosure: Allowance for nonuniformity of gas temperature, AIChE Journal, 4 (1958) 3–14.CrossRef
    [23]C. Cercignani, The Boltzmann equation and its applications, Applied Mathematical Sciences V.67, Springer-Verlag, New York (1988) 40–103.MATH
    [24]K. Takayanagi, Y. Kondo and H. Ohnishi, Suspended gold nanowires: ballistic transport of electrons, Japan Society of Applied Physics International, 3 (2001) 3–8.
    [25]R. B. Peterson, Direct simulation of phonon-mediated heat transfer in a Debye crystal, ASME Journal of Heat Transfer, 116 (1994) 815–822.CrossRef
    [26]J. Randrianalisoa and D. Baillis, Monte Carlo simulation of steady-state microscale phonon heat transport, ASME Journal of Heat Transfer, 130 (2008) 0724041–07240413.CrossRef
    [27]G. Chen, Phonon heat conduction in nanostructure, Journal of Thermal Sciences, 39 (2000) 471–480.CrossRef
    [28]Y. Chen, D. Li, J. R. Lukes and A. Majumdar, Monte Carlo simulation of silicon nanowire thermal conductivity, ASME Journal of Heat Transfer, 127 (2005) 1129–1137.CrossRef
    [29]G. Chen, Nanoscale energy transport and conversion: a parallel treatment of electrons, molecules, phonons, and photons, Oxford (2005).
    [30]Z. M. Zhang, Nano/microscale heat transfer, McGraw-Hill, New York (2007).
    [31]T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, Extraordinary optical transmission through subwavelength hole arrays, Nature, 391 (1998) 667–669.CrossRef
  • 作者单位:Tae-Ho Song (1)

    1. School of Mechanical Engineering, Aerospace and System Engineering, Korea Advanced Institute of Science & Technology, Yuseong-gu, Daejeon, 305-701, Korea
  • 刊物类别:Engineering
  • 刊物主题:Mechanical Engineering
    Structural Mechanics
    Control Engineering
    Industrial and Production Engineering
  • 出版者:The Korean Society of Mechanical Engineers
  • ISSN:1976-3824
文摘
Heat transfer relations among discrete segments expressed in the form \({q_i} = \sum\limits_{j = 1}^N {{C_{ij}}} f\left( {{T_j}} \right)\), with f (T) being a monotonically increasing function of T, are examined to find the properties of the conductance matrix C using constraints such as the first and second laws of thermodynamics, rule of diffusivity, and Onsager’s reciprocal relations. The obtained properties are; zero sum for each row (leading to the expression \({q_i} = \sum\limits_{j = 1}^N {{C_{ij}}} \left[ {f\left( {{T_j}} \right) - f\left( {{T_i}} \right)} \right]\) and the singularity of C ) and for each column, non-negativeness of off-diagonal entries (diffusivity), and negative semi-definiteness of C. Matrix C is symmetric for time-reversible independent processes such as conduction and radiation (either spectral or total), but not for convection. The diffusivity may be overcome in a new meta-material with a promising applicability. The obtained relations may be used as convenient tools of formulation and may be further applied to other heat and mass transfer processes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700