用户名: 密码: 验证码:
Effects of neutrophils peptide-1 transgenic Chlorella ellipsoidea on the gut microbiota of male Sprague–Dawley rats, as revealed by high-throughput 16S rRNA sequencing
详细信息    查看全文
  • 作者:Mingzhang Guo ; Qi Bao ; Siyuan Chen
  • 关键词:Neutrophils peptide ; 1 ; Chlorella ellipsoidea ; Gut microbiota ; Lactic acid bacteria
  • 刊名:World Journal of Microbiology & Biotechnology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:32
  • 期:3
  • 全文大小:930 KB
  • 参考文献:Allen HK, Looft T, Bayles DO, Humphrey S, Levine UY, Alt D, Stanton TB (2011) Antibiotics in feed induce prophages in swine fecal microbiomes. MBio 2(6):e00260-11CrossRef
    Bahar AA, Ren D (2013) Antimicrobial peptides. Pharmaceuticals (Basel) 6:1543–1575CrossRef
    Bai LL, Yin WB, Chen YH, Niu LL, Sun YR, Zhao SM, Yang FQ, Wang RRC, Wu Q, Zhang XQ, Hu ZM (2013) A new strategy to produce a defensin: stable production of mutated NP-1 in nitrate reductase-deficient Chlorella ellipsoidea. PLoS ONE 8(1):e54966CrossRef
    Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ (2015) Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13(1):42–51CrossRef
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, Daniel McDonald, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turngaugh PJ, Walters WA, Widmann J, Yatsunenko TY, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336CrossRef
    Chen Y, Wang Y, Sun Y, Zhang L, Li W (2001) Highly efficient expression of rabbit neutrophil peptide-1 gene in Chlorella ellipsoidea cells. Curr Genet 39:365–370CrossRef
    DeSantis TZ, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi H, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microb 72(7):5069–5072CrossRef
    Devaraj S, Hemarajata P, Versalovic J (2013) The human gut microbiome and body metabolism: implications for obesity and diabetes. Clin Chem 59(4):617–628CrossRef
    Frank DN, Pace NR (2008) Gastrointestinal microbiology enters the metagenomics era. Curr opin Gastroen 24(1):4–10CrossRef
    Gottler LM, Ramamoorthy A (2009) Structure, membrane orientation, mechanism, and function of pexiganan–a highly potent antimicrobial peptide designed from magainin. Biochim Biophys Acta 1788:1680–1686CrossRef
    Guo M, Huang K, Chen S, Qi X, He X, Cheng WH, Luo Y, Xia K, Xu W (2014) Combination of metagenomics and culture-based methods to study the interaction between ochratoxin a and gut microbiota. Toxicol Sci 141(1):314–323CrossRef
    Hammer Ø, Harper D, Ryan P (2001) Past: paleontological statistics software package for education and data analysis. Paleontología Electrónica 4:1–9
    Hirono I, Hwang JY, Ono Y, Kurobe T, Ohira T, Nozaki R, Aoki T (2005) Two different types of hepcidins from the Japanese flounder Paralichthys olivaceus. FEBS J 272(20):5257–5264CrossRef
    Jenssen H, Hamill P, Hancock RE (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511CrossRef
    Klein G, Pack A, Bonaparte C, Reuter G (1998) Taxonomy and physiology of probiotic lactic acid bacteria. Int J Food Microbiol 41(2):103–125CrossRef
    Looft T, Johnson TA, Allen HK, Bayles DO, Alt DP, Stedtfeld RD, Sul WJ, Stedtfeld TM, Chai BL, Cole JR, Hashsham SA, Tiedie JM, Stanton TB (2012) In-feed antibiotic effects on the swine intestinal microbiome. P Natl Acad Sci USA 109(5):1691–1696CrossRef
    Miyasaki KT, Bodeau AL, Selsted ME, Ganz T, Lehrer RI (1990) Killing of oral, Gram-negative, facultative bacteria by the rabbit defensin, NP-1. Oral Microbiol Immunol 5(6):315–319CrossRef
    Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S (2012) Host-gut microbiota metabolic interactions. Science 336(6086):1262–1267CrossRef
    Peters BM, Shirtliff ME, Jabra-Rizk MA (2010) Antimicrobial peptides: primeval molecules or future drugs? PLoS Pathog 6:e1001067CrossRef
    Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Cheng W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Li S, Yang H, Wang J, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K, Yang H (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490(7418):55–60CrossRef
    Rossolini GM, Arena F, Pecile P, Pollini S (2014) Update on the antibiotic resistance crisis. Curr Opin Pharmacol 18:56–60CrossRef
    Segata N, Lzard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12(6):R60CrossRef
    Selsted ME, Szklarek D, Lehrer RI (1984) Purification and antibacterial activity of antimicrobial peptides of rabbit granulocytes. Infect Immun 45(1):150–154
    Sommer F, Bäckhed F (2013) The gut microbiota—masters of host development and physiology. Nat Rev Microbiol 11(4):227–238CrossRef
    Sun M, Xiao T, Ning Z, Xiao E, Sun W (2015) Microbial community analysis in rice paddy soils irrigated by acid mine drainage contaminated water. Environ Biotechnol 99:2911–2922CrossRef
    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267CrossRef
    Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55CrossRef
    Zhang X, Zhao Y, Zhang M, Pang X, Xu J, Kang C, Li M, Zhang C, Zhang Z, Zhang Y, Li X, Ning G, Zhao L (2012) Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PLoS ONE 7(8):e42529CrossRef
    Zhang C, Li S, Yang L, Huang P, Li W, Wang S, Zhang G, Zhang M, Peng X, Yan Z, Liu Y, Zhao L (2013) Structural modulation of gut microbiota in life-long calorie-restricted mice. Nat Commun 4:1–10CrossRef
  • 作者单位:Mingzhang Guo (1)
    Qi Bao (1)
    Siyuan Chen (1)
    Xingtian Cui (1)
    Wentao Xu (1) (2)
    Xiaoyun He (1)
    Yunbo Luo (1)
    Xiaozhe Qi (1)
    Kunlun Huang (1) (2)

    1. Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People’s Republic of China
    2. Beijing Laboratory for Food Quality and Safety, Beijing, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Applied Microbiology
    Biotechnology
    Biochemistry
    Environmental Biotechnology
    Microbiology
  • 出版者:Springer Netherlands
  • ISSN:1573-0972
文摘
Rabbit neutrophils peptide-1 (NP-1) is a type of defensin that possesses a broad spectrum of antimicrobial activity. Chlorella ellipsoidea is a new eukaryotic expression system for exogenously producing NP-1. The NP-1 transgenic C. ellipsoidea can be directly added into feed as antimicrobial agent without any purification procedure for the NP-1 peptide. However, the effects of C. ellipsoidea and NP-1 on the host gut microbiota should be explored before application. In this study, diets containing different concentrations (1.25, 2.5, and 5 %) of C. ellipsoidea and NP-1 transgenic C. ellipsoidea were administered to male Sprague–Dawley rats. Compared with the chow diet control group, none of the experimental groups showed any significant differences in their growth indices, and no histopathological damage was observed. The phylotypes of gut microbiota in the control group, the 5 % C. ellipsoidea diet group and the 5 % NP-1 transgenic C. ellipsoidea diet group were determined by 16S rRNA sequencing. The results showed that both 5 % experimental groups had shifted community memberships of gut microbiota. In particular, the 5 % NP-1 transgenic C. ellipsoidea diet exhibited an increased abundance of most Gram-positive bacterial taxa and a reduced abundance of most Gram-negative bacterial taxa, and it promoted the growth of some lactic acid bacterial genera. Lactic acid bacteria, especially the Bifidobacterium and Lactobacillus, have been widely reported to be benefic effects on the host. Thus NP-1 transgenic C. ellipsoidea is promising feed additive and gut regulator, as it have the potential to increase the abundance of Bifidobacterium and Lactobacillus in gut microbiota of animal. Keywords Neutrophils peptide-1 Chlorella ellipsoidea Gut microbiota Lactic acid bacteria

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700