用户名: 密码: 验证码:
Influence of graphite oxide drying temperature on ultra-fast microwave synthesis of graphene
详细信息    查看全文
  • 作者:Shenting Liu (1)
    Jiang Wu (1)
    Zhihua Zhou (1)
    Lei Gao (1)
    Siyuan Luo (1)
    Xingliang Xu (1)
    Zhiming M. Wang (1)
  • 刊名:Journal of Materials Science: Materials in Electronics
  • 出版年:2013
  • 出版时间:April 2013
  • 年:2013
  • 卷:24
  • 期:4
  • 页码:1298-1302
  • 全文大小:422KB
  • 参考文献:1. D.P. Kumah, S. Shusterman, Y. Paltiel, Y. Yacoby, R. Clarke, Atomic-scale mapping of quantum dots formed by droplet epitaxy. Nat. Nanotechnol. 4, 835鈥?38 (2009) CrossRef
    2. J. Wu, D. Shao, V.G. Dorogan, A.Z. Li, S. Li, E.A. Decuir et al., Intersublevel infrared photodetector with strain-free GaAs quantum dot pairs grown by high-temperature droplet epitaxy. Nano Lett. 10, 1512鈥?516 (2010) CrossRef
    3. V.F. Puntes, K.M. Krishnan, A.P. Alivisatos, Colloidal nanocrystal shape and size control: the case of cobalt. Science 291, 2115鈥?117 (2001) CrossRef
    4. X. Zhou, S. Sanwlani, W. Liu, J.H. Lee, Z.M. Wang, G. Salamo et al., Spectroscopic signatures of many-body interactions and delocalized states in self-assembled lateral quantum dot molecules. Phys. Rev. B 84, 205411 (2011) CrossRef
    5. J.H. Lee, Z.M. Wang, W.T. Black, V.P. Kunets, Y.I. Mazur, G.J. Salamo, Spatially localized formation of inas quantum dots on shallow patterns regardless of crystallographic directions. Adv. Funct. Mater. 17, 3187鈥?193 (2007) CrossRef
    6. J.H. Lee, Z.M. Wang, N.W. Strom, Y.I. Mazur, G.J. Salamo, InGaAs quantum dot molecules around self-assembled GaAs nanomound templates. Appl. Phys. Lett. 89, 202101 (2006) CrossRef
    7. A. Fuhrer, S. Luscher, T. Ihn, T. Heinzel, K. Ensslin, W. Wegscheider et al., Energy spectra of quantum rings. Nature 413, 822鈥?25 (2001) CrossRef
    8. J. Wu, Z.M. Wang, K. Holmes, E. Marega Jr, Z. Zhou, H. Li et al., Laterally aligned quantum rings: from one-dimensional chains to two-dimensional arrays. Appl. Phys. Lett. 100, 203117 (2012) CrossRef
    9. J. Wu, Z. Li, D. Shao, M.O. Manasreh, V.P. Kunets, Z.M. Wang et al., Multicolor photodetector based on GaAs quantum rings grown by droplet epitaxy. Appl. Phys. Lett. 94, 171102 (2009) CrossRef
    10. S.J. Tans, A.R.M. Verschueren, C. Dekker, Room-temperature transistor based on a single carbon nanotube. Nature 393, 49鈥?2 (1998) CrossRef
    11. Y.F. Zhang, Y.F. Wang, N. Chen, Y.Y. Wang, Y.Z. Zhang, Z.H. Zhou et al., Photovoltaic enhancement of Si solar cells by assembled carbon nanotubes. Nano-Micro Lett 2, 22鈥?5 (2010)
    12. Y. Liu, H. Zhou, J. Li, H. Chen, D. Li, B. Zhou et al., Enhanced photoelectrochemical properties of Cu2O-loaded short TiO2 nanotube array electrode prepared by sonoelectrochemical deposition. Nano-Micro Lett 2, 277鈥?84 (2010)
    13. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind et al., Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897鈥?899 (2001) CrossRef
    14. Y. Cui, C.M. Lieber, Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291, 851鈥?53 (2001) CrossRef
    15. S. Bhowmick, K. Alam, SEffects of source-drain underlaps on the performance of silicon nanowire on insulator transistors. Nano-Micro Lett 2, 83鈥?8 (2010)
    16. Y.-M. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H.-Y. Chiu, A. Grill et al., 100-GHz transistors from wafer-scale epitaxial graphene. Science 327, 662 (2010) CrossRef
    17. B.J. Kim, H. Jang, S. Lee, B.H. Hong, J. Ahn, J.H. Cho, High-performance flexible graphene field effect transistors with ion gel gate dielectrics. Nano Lett. 10, 3464鈥?466 (2010) CrossRef
    18. F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, P. Avouris, Ultrafast graphene photodetector. Nat. NANO 4, 839鈥?43 (2009) CrossRef
    19. T. Mueller, F. Xia, P. Avouris, Graphene photodetectors for high-speed optical communications. Nat. Photon. 4, 297鈥?01 (2010) CrossRef
    20. E. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8, 2277鈥?282 (2008) CrossRef
    21. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud et al., Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191鈥?196 (2006) CrossRef
    22. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos et al., Electric field effect in atomically thin carbon films. Science 306, 666鈥?69 (2004) CrossRef
    23. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558鈥?565 (2007) CrossRef
    24. L. Kou, H. He, C. Cao, Click chemistry approach to functionalize two-dimensional macromolecules of graphene oxide nanosheeets. Nano-Micro Lett. 2, 177鈥?83 (2010)
    25. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706鈥?10 (2009) CrossRef
    26. K. Yin, H. Li, Y. Xia, H. Bi, J. Sun, Z. Liu et al., Thermo-dynamic and kinetic analysis of low-temperature thermal reduction of graphene oxide. Nano-Micro Lett. 3, 51鈥?5 (2011)
    27. A.V. Murugan, T. Muraliganth, A. Manthiram, Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage. Chem. Mater. 21, 5004鈥?006 (2009) CrossRef
    28. Z. Li, Y. Yao, Z. Lin, K. Moon, W. Lin, C. Wong, Ultrafast, dry microwave synthesis of graphene sheets. J. Mater. Chem. 20, 4781鈥?783 (2010) CrossRef
    29. V. Sridhar, J. Jeon, I. Oh, Synthesis of graphene nano-sheets using eco-friendly chemicals and microwave radiation. Carbon 48, 2953鈥?957 (2010) CrossRef
    30. N. Hu, L. Meng, R. Gao, Y. Wang, J. Chai, Z. Yang et al., A facile route for the large scale fabrication of graphene oxide papers and their mechanical enhancement by cross-linking with glutaraldehyde. Nano-Micro Lett. 3, 215鈥?22 (2011) CrossRef
    31. H. Hu, Z. Zhao, Q. Zhou, Y. Gogotsi, J. Qiu, The role of microwave absorption on formation of graphene from graphite oxide. Carbon 50, 3267鈥?273 (2012) CrossRef
    32. W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958) CrossRef
    33. D. Chen, L. Li, L. Guo, An environment-friendly preparation of reduced graphene oxide nanosheets via amino acid. Nanotechnology 22, 325601 (2011) CrossRef
    34. E. Choi, T.H. Han, J. Hong, J.E. Kim, S.H. Lee, H.W. Kim et al., Noncovalent functionalization of graphene with end-functional polymers. J. Mater. Chem. 20, 1907鈥?912 (2010) CrossRef
    35. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006) CrossRef
  • 作者单位:Shenting Liu (1)
    Jiang Wu (1)
    Zhihua Zhou (1)
    Lei Gao (1)
    Siyuan Luo (1)
    Xingliang Xu (1)
    Zhiming M. Wang (1)

    1. State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, People鈥檚 Republic of China
  • ISSN:1573-482X
文摘
Ultra-fast synthesis of graphene has been reported by microwave assisted graphene oxide reduction. In this article, the graphene oxide was initially dried above room temperature. The initial heat treatment of graphene oxide demonstrates a distinct improvement of exfoliation rate of graphene sheets. This method provides an efficient way for mass production of high quality graphene sheets. Raman spectroscopy, scanning electron microscopy, and X-ray diffraction techniques has been used to characterize reduced graphene sheets. The quality of reduced graphene was found to be affected by the initial drying temperature of graphite oxide.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700