用户名: 密码: 验证码:
A fast multi-obstacle muscle wrapping method using natural geodesic variations
详细信息    查看全文
  • 作者:Andreas Scholz ; Michael Sherman ; Ian Stavness ; Scott Delp…
  • 关键词:Muscle wrapping ; Musculotendon path ; Shortest path ; Geodesic ; Geodesic variation ; Jacobi field
  • 刊名:Multibody System Dynamics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:36
  • 期:2
  • 页码:195-219
  • 全文大小:1,470 KB
  • 参考文献:1. Arnold, A.S., Blemker, S.S., Delp, S.L.: Evaluation of a deformable musculoskeletal model for estimating muscle-tendon lengths during crouch gait. Ann. Biomed. Eng. 29, 263–274 (2001) CrossRef
    2. Kerr, G.H., Selber, P.: Musculoskeletal aspects of cerebral palsy. J. Bone Jt. Surg.—Br. Vol. 85(2), 157–166 (2003) CrossRef
    3. Arnold, A.S., Anderson, F.C., Pandy, M.G., Delp, S.L.: Muscular contributions to hip and knee extension during the single limb stance phase of normal gait: a framework for investigating the causes of crouch gait. J. Biomech. 38, 2181–2189 (2005) CrossRef
    4. Hicks, J.L., Schwartz, M.H., Arnold, A.S., Delp, S.L.: Crouched postures reduce the capacity of muscles to extend the hip and knee during the single-limb stance phase of gait. J. Biomech. 41, 960–967 (2008) CrossRef
    5. Steele, K.M., Seth, A., Hicks, J.L., Schwartz, M.S., Delp, S.L.: Muscle contributions to support and progression during single-limb stance in crouch gait. J. Biomech. 43, 2099–2105 (2010) CrossRef
    6. Neptune, R.R., Kautz, S.A., Zajac, F.E.: Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. J. Biomech. 34, 1387–1398 (2001) CrossRef
    7. Zajac, F.E., Neptune, R.R., Kautz, S.A.: Biomechanics and muscle coordination of human walking. Part 1: introduction to concepts, power transfer, dynamics and simulations. Gait Posture 16, 215–232 (2002) CrossRef
    8. Zajac, F.E., Neptune, R.R., Kautz, S.A.: Biomechanics and muscle coordination of human walking. Part 2: lessons from dynamical simulations and clinical implications. Gait Posture 17, 1–17 (2003) CrossRef
    9. Liu, M.Q., Anderson, F.C., Pandy, M.G., Delp, S.L.: Muscles that support the body also modulate forward progression during walking. J. Biomech. 39, 2623–2630 (2006) CrossRef
    10. van der Krogt, M.M., Delp, S.L., Schwartz, M.H.: How robust is human gait to muscle weakness? Gait Posture 36, 113–119 (2012) CrossRef
    11. Neptune, R.R., Sasaki, K.: Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed. J. Exp. Biol. 208, 799–808 (2005) CrossRef
    12. Hamner, S.R., Seth, A., Delp, S.L.: Muscle contributions to propulsion and support during running. J. Biomech. 43, 2709–2716 (2010) CrossRef
    13. van der Helm, F.C.T.: The shoulder mechanism: a dynamic approach. Ph.D. Thesis. Delft University of Technology (1991)
    14. Yu, J., Ackland, D.C., Pandy, M.G.: Shoulder muscle function depends on elbow joint position: an illustration of dynamic coupling in the upper limb. J. Biomech. 44, 1859–1868 (2011) CrossRef
    15. Sasaki, K., Neptune, R.R.: Individual muscle contributions to the axial knee joint contact force during normal walking. J. Biomech. 43, 2780–2784 (2010) CrossRef
    16. Lin, Y.-C., Walter, J.P., Banks, S.A., Pandy, M.G., Fregly, B.J.: Simultaneous prediction of muscle and contact forces in the knee during gait. J. Biomech. 43, 945–952 (2010) CrossRef
    17. Winby, C.R., Lloyd, D.G., Besier, T.F., Kirk, T.B.: Muscle and external load contribution to knee joint contact loads during normal gait. J. Biomech. 42, 2294–2300 (2009) CrossRef
    18. Moissenet, F., Chèze, L., Dumas, R.: A 3D lower limb musculoskeletal model for simultaneous estimation of musculo-tendon, joint contact, ligament and bone forces during gait. J. Biomech. (2013)
    19. Giat, Y., Mizrahl, J., Levine, W.S., Chen, J.: Simulation of distal tendon transfer of the biceps brachii and the brachialis muscles. J. Biomech. 27(8), 1005–1014 (1994) CrossRef
    20. Hill, A.V.: The mechanics of active muscle. Proc. - Royal Soc., Biol. Sci. 141, 104–117 (1953) CrossRef
    21. Gordon, A.M., Huxley, A.F., Julian, F.J.: The variation in isometric tension with sarcomere length in vertebrae muscle fibers. J. Physiol. 184, 170–192 (1966) CrossRef
    22. Bahler, A.S., Fales, J.T., Zierler, K.L.: The dynamic properties of mammalian skeletal muscle. J. Gen. Physiol. 51, 369–384 (1968) CrossRef
    23. Zajac, F.E.: Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17(4), 359–411 (1989)
    24. Millard, M., Uchida, T., Seth, A., Delp, S.L.: Flexing computational muscle: modeling and simulation of musculotendon dynamics. J. Biomech. Eng. 135, 021004-1–021004-11 (2013)
    25. Brand, R.A., Crowninshield, R.D., Wittstock, C.E., Pedersen, D.R., Clark, C.R., van Krieken, F.M.: A model of lower extremity muscular anatomy. J. Biomech. Eng. 104(4), 304–310 (1982) CrossRef
    26. Ackland, D.C., Pandy, M.G.: Lines of action and stabilizing potential of the shoulder musculature. J. Anat. 215, 184–197 (2009) CrossRef
    27. Blemker, S.S., Asakawa, D.S., Gold, G.E., Delp, S.L.: Image-based musculoskeletal modeling: applications, advances, and future opportunities. J. Magn. Reson. Imaging 25, 441–451 (2007) CrossRef
    28. Webb, J.D., Blemker, S.S., Delp, S.L.: 3D finite element models of shoulder muscles for computing lines of actions and moment arms. Comput. Methods Biomech. Biomed. Engin., 1–9 (2012)
    29. An, K.-A., Berglund, L., Cooney, W.P., Chao, E.Y.S., Kovacevic, N.: Direct in vivo tendon force measurement system. J. Biomech. 23(12), 1269–1271 (1990) CrossRef
    30. Schuind, F., Garcia-Elias, M., Cooney, W.P. III, An, K.-N.: Flexor tendon forces: in vivo measurements. J. Hand Surg. 17(2), 291–298 (1992) CrossRef
    31. Garner, B.A., Pandy, M.G.: The obstacle-set method for representing muscle paths in musculoskeletal simulations. Comput. Methods Biomech. Biomed. Eng. 3, 1–30 (1999) CrossRef
    32. Charlton, I.W., Johnson, G.R.: Application of spherical and cylindrical wrapping algorithms in a musculoskeletal model of the upper limb. J. Biomech. 34, 1209–1216 (2001) CrossRef
    33. Gao, F., Damsgaard, M., Rasmussen, J., Christensen, S.T.: Computational method for muscle-path representation in musculoskeletal models. Biol. Cybern. 87, 199–210 (2002) CrossRef MATH
    34. Marai, G.E., Laidlaw, D.H., Demiralp, C., Andrews, S., Grimm, C.M., Crisco, J.J.: Estimating joint contact areas and ligaments lengths from bone kinematics and surfaces. IEEE Trans. Biomed. Eng. 51(5), 790–799 (2004) CrossRef
    35. Carman, A.B., Milburn, P.D.: Dynamic coordinate data for describing muscle-tendon paths: a mathematical approach. J. Biomech. 38, 943–951 (2005) CrossRef
    36. Blemker, S.S., Delp, S.L.: Rectus femoris and vastus intermedius fiber excursions predicted by three-dimensional muscle models. J. Biomech. 39, 1383–1391 (2006) CrossRef
    37. Marsden, S.P., Swailes, D.C., Johnson, G.R.: Algorithms for exact multi-object muscle wrapping and application to the deltoid muscle wrapping around the humerus. Proc. Inst. Mech. Eng., H J. Eng. Med. 222(7), 1081–1095 (2008) CrossRef
    38. Röhrle, O., Davidson, J.B., Pullan, A.J.: Bridging scales: a three-dimensional electromechanical finite element model of skeletal muscle. SIAM J. Sci. Comput. 30(6), 2882–2904 (2008) MathSciNet CrossRef MATH
    39. Audenaert, A., Audenaert, E.: Global optimization method for combined spherical-cylindrical wrapping in musculoskeletal upper limb modeling. Comput. Methods Programs Biomed. 92, 8–19 (2008) CrossRef
    40. Gatti, C.J., Hughes, R.E.: Optimization of muscle wrapping objects using simulated annealing. Ann. Biomed. Eng. 37(7), 1342–1347 (2009) CrossRef
    41. Vasavada, A.N., Lasher, R.A., Meyer, T.E., Lin, D.C.: Defining and evaluating wrapping surfaces for MRI-derived spinal muscle paths. J. Biomech. 41, 1450–1457 (2008) CrossRef
    42. Arnold, E.M., Ward, S.R., Lieber, R.L., Delp, S.L.: A model of the lower limb for analysis of human movement. Ann. Biomed. Eng. 38(2), 269–279 (2010) CrossRef
    43. Esat, I.I., Ozada, N.: Articular human joint modeling. Robotica 28, 321–339 (2010) CrossRef
    44. Favre, P., Gerber, C., Snedeker, J.G.: Automated muscle wrapping using finite element detection. J. Biomech. 43, 1931–1940 (2010) CrossRef
    45. Spyrou, L.A., Aravas, N.: Muscle-driven finite element simulation of human foot movements. Comput. Methods Biomech. Biomed. Eng. 5(9), 925–934 (2012) CrossRef
    46. Stavness, I., Sherman, M., Delp, S.L.: A general approach to muscle wrapping over multiple surfaces. Florida, USA, 2012. Proc. Amer. Soc. Biomech. (2012)
    47. Scholz, A., Stavness, I., Sherman, M., Delp, S.L., Kecskeméthy, A.: Improved muscle wrapping algorithms using explicit path-error Jacobians. Barcelona, Spain, 2012. Comput. Kinematics. (2012)
    48. Desailly, E., Sardain, P., Khouri, N., Yepremian, D., Lacouture, P.: The convex wrapping algorithm: a method for identifying muscle paths using the underlying bone mesh. J. Biomech. 43, 2601–2607 (2010) CrossRef
    49. Struik, D.J.: Lectures on Classical Differential Geometry. Dover, New York (1988) MATH
    50. Strubecker, K.: Differentialgeometrie Band 3: Theorie der Flächenkrümmung. de Gruyter, Berlin (1969)
    51. do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice Hall, New York (1976) MATH
    52. Pressley, A.: Elementary Differential Geometry. Springer, Berlin (2010) CrossRef MATH
    53. do Carmo, M.P.: Riemannian Geometry. Birkhäuser, Basel (1993)
    54. Strubecker, K.: Differentialgeometrie Band 2: Theorie der Flächenmetrik. de Gruyter, Berlin (1969)
    55. Kecskeméthy, A., Hiller, M.: An object-oriented approach for an effective formulation of multibody dynamics. Comput. Methods Appl. Math. 115(3–4), 287–314 (1994)
    56. Pai, D.K.: Muscle mass in musculoskeletal models. J. Biomech. 43(11), 2093–2098 (2010) MathSciNet CrossRef
  • 作者单位:Andreas Scholz (1)
    Michael Sherman (2)
    Ian Stavness (3)
    Scott Delp (4)
    Andrés Kecskeméthy (5)

    1. Department of Mechanical Engineering, University of Duisburg-Essen, 47057, Duisburg, Germany
    2. Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
    3. Department of Computer Science, University of Saskatchewan, Saskatoon, SK, S7N 5A2, Canada
    4. Departments of Bioengineering and Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
    5. Chair of Mechanics and Robotics, University of Duisburg-Essen, 47057, Duisburg, Germany
  • 刊物类别:Engineering
  • 刊物主题:Vibration, Dynamical Systems and Control
    Optimization
    Electronic and Computer Engineering
    Mechanical Engineering
    Automotive and Aerospace Engineering and Traffic
  • 出版者:Springer Netherlands
  • ISSN:1573-272X
文摘
Musculoskeletal simulation has become an essential tool for understanding human locomotion and movement disorders. Muscle-actuated simulations require methods that continuously compute musculotendon paths, their lengths, and their rates of length change to determine muscle forces, moment arms, and the resulting body and joint loads. Musculotendon paths are often modeled as locally length minimizing curves that wrap frictionlessly over moving obstacle surfaces representing bone and tissue. Biologically accurate wrapping surfaces are complex, and a single muscle path may wrap around many obstacles. However, state-of-the-art muscle wrapping methods are either limited to analytical results for a pair of simple surfaces, or they are computationally expensive. In this paper, we introduce the Natural Geodesic Variation (NGV) method for the fast and accurate computation of a musculotendon’s shortest path across an arbitrary number of general smooth wrapping surfaces, and an explicit formula for the path’s exact rate of length change. The total path is regarded as a concatenation of straight-line segments between local surface geodesics, where each geodesic is naturally parameterized by its starting point, direction, and length. The shortest path is computed by finding the root of a global path-error constraint equation that enforces that the geodesics connect collinearly with adjacent straight-line segments. High computational speed is achieved using Newton’s method to zero the path error, with an explicit, banded Jacobian that maps natural variations of the geodesic parameters to path-error variations. Three simulation benchmarks demonstrate that the NGV method computes high-precision solutions for path length and rate of length change, allows for wrapping over biologically accurate surfaces, and is capable of simulating muscle paths over hundreds of surfaces in real time. We thus believe the NGV method will facilitate the development of more accurate yet very efficient musculoskeletal models. Keywords Muscle wrapping Musculotendon path Shortest path Geodesic Geodesic variation Jacobi field

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700