用户名: 密码: 验证码:
Mixing efficiency enhancing in micromixer by controlled magnetic stirring of Fe3O4 nanomaterial
详细信息    查看全文
  • 作者:Ming Chang ; Jacque Lynn F. Gabayno ; Ruifang Ye ; Ke-Wei Huang…
  • 刊名:Microsystem Technologies
  • 出版年:2017
  • 出版时间:February 2017
  • 年:2017
  • 卷:23
  • 期:2
  • 页码:457-463
  • 全文大小:
  • 刊物类别:Engineering
  • 刊物主题:Electronics and Microelectronics, Instrumentation; Nanotechnology; Mechanical Engineering;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1432-1858
  • 卷排序:23
文摘
Rapid and complete mixing are fundamental criteria in the design of microfluidic chips and to date, magnetic stir bars are proving convenient and efficient tools for both macroscale and lab-on-chip applications. In this work, we implement magnetic stirring of Fe3O4 nanomateral to mediate active mixing in T-shape micromixers, where passive diffusion of two solutes (blue phenol dye and citric acid) has otherwise proven inefficient. The Fe3O4 magnetic nanoparticles are added to the citric acid which then transform into nano- or micro-rods that rotate synchronously with an external rotating magnetic field. As such, the local flow field that each rod generates can perturb the hydrodynamic flow in the mixing channel. The mixing performance with magnetic nanoparticles added at different concentrations and rotation speeds reveal that higher concentration of magnetic particles in the solution and fast rotation speeds improve the efficiency significantly. More efficient mixing with microrods is also achievable using wide channels and low flow rates. Efficient mixing has been realized for a 6.6 mT driving field if the magnetic materials are rotated at 10.47 rad s−1 and 0.05 wt% concentration. The same parameters applied to a 300 µm micro channel at 2 µL min−1 flow rate more than double the efficiency of a passive micromixer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700