用户名: 密码: 验证码:
Grafting of arginine and glutamic acid onto cellulose for enhanced uranyl sorption
详细信息    查看全文
文摘
The grafting of arginine and glutamic acid on cellulose (through an intermediary step of chlorination) allows improving uranyl sorption of the biopolymer. The sorbents (Arg-Cell and Glu-Cell) were characterized by elemental analysis, FTIR spectrometry, XRD, SEM-EDX analysis and TGA. The sorption efficiency increases with pH; this can be attributed to the deprotonation of carboxylic acid and amine groups and to the formation of polynuclear hydrolyzed uranyl species. Sorption isotherms (fitted by the Langmuir equation) show sorption capacities at saturation of the monolayer of 147 and 168 mg U g−1 for Arg-Cell and Glu-Cell, respectively (compared to 78 mg U g−1 for raw cellulose); maximum sorption capacities at equilibrium (experimental values) reach 138, 160 and 73.4 for Arg-Cell, Glu-Cell and cellulose, respectively. Uranyl sorption is endothermic and is spontaneous for amino acid derivatives of cellulose (contrary to exothermic for cellulose). Uptake kinetics for the different sorbents are fitted by the pseudo-second-order rate equation. Uranium can be desorbed using sulfuric acid solutions, and the sorbents can be recycled for a minimum of five cycles of sorption/desorption: the decrease in sorption capacities at the fifth cycle does not exceed 13%.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700