用户名: 密码: 验证码:
How much yield loss has been caused by extreme temperature stress to the irrigated rice production in China?
详细信息    查看全文
  • 作者:Pin Wang ; Zhao Zhang ; Yi Chen ; Xing Wei ; Boyan Feng ; Fulu Tao
  • 刊名:Climatic Change
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:134
  • 期:4
  • 页码:635-650
  • 全文大小:1,599 KB
  • 参考文献:Asseng S, Ewert F, Rosenzweig C, Jones J, Hatfield J, Ruane A, Boote K, Thorburn P, Rotter R, Cammarano D, Brisson N, Basso B, Martre P, Aggarwal P, Angulo C, Bertuzzi P, Biernath C, Challinor A, Doltra J, Gayler S, Goldberg R, Grant R, Heng L, Hooker J, Hunt L, Ingwersen J, Izaurralde R, Kersebaum K, Muller C, Naresh Kumar S, Nendel C, O/'Leary G, Olesen J, Osborne T, Palosuo T, Priesack E, Ripoche D, Semenov M, Shcherbak I, Steduto P, Stockle C, Stratonovitch P, Streck T, Supit I, Tao F, Travasso M, Waha K, Wallach D, White J, Williams J, Wolf J (2013) Uncertainty in simulating wheat yields under climate change. Nat Clim Chang 3(9):827–832CrossRef
    Bondeau A, Smith PC, Zaehle S, Schaphoff S, Lucht W, Cramer W, Gerten D, Lotze-Campen H, Müller C, Reichstein M, Smith B (2007) Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob Chang Biol 13:679–706CrossRef
    Butler EE, Huybers P (2013) Adaptation of US maize to temperature variations. Nat Clim Chang 3:68–72CrossRef
    Challinor AJ, Wheeler TR, Craufurd PQ, Slingo JM, Grimes DIF (2004) Design and optimisation of a large-area process-based model for annual crops. Agric For Meteorol 124(1–2):99–120CrossRef
    Challinor AJ, Wheeler TR, Craufurd PQ, Slingo JM (2005) Simulation of the impact of high temperature stress on annual crop yields. Agric For Meteorol 135(1–4):180–189CrossRef
    Ewert F, Rötter RP, Bindi M, Webber H, Trnka M, Kersebaum KC, Olesen JE, van Ittersum MK, Janssen S, Rivington M, Semenov MA, Wallach D, Porter JR, Stewart D, Verhagen J, Gaiser T, Palosuo T, Tao F, Nendel C, Roggero PP, Bartošová L, Asseng S (2014) Crop modelling for integrated assessment of risk to food production from climate change. Environ Model Softw. doi:10.​1016/​j.​envsoft.​2014.​12.​003
    FAO (1991) The digitized soil map of the world (release 1.0). World soil resource Rep. 67. FAO, Rome
    GB/T 21985–2008 (2008) Temperature index of high temperature harm for main crops. China Standards Press, Beijing, in Chinese
    Haxeltine A, Prentice IC (1996) BIOME3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, resources availability, and competition among plant functional types. Glob Biogeochem Cycles 10:693–709CrossRef
    Horie T, Nakagawa H, Centeno HGS, Kropff M (1995) The rice crop simulation model SIMRIW and its testing. In: Matthews RB et al. (Eds.) Modeling the impact of climate change on rice in Asia. CAB International, Wallingford, UK, pp. 51–66
    Iizumi T, Yokozawa M, Nishimori M (2009) Parameter estimation and uncertainty analysis of a large-scale crop model for paddy rice: application of a Bayesian approach. Agric For Meteorol 149:333–348CrossRef
    Lobell DB, Schlenker W, Costa-Roberts J (2011a) Climate trends and global crop production since 1980. Science 333(6042):616–620CrossRef
    Lobell DB, Banziger M, Magorokosho C, Vivek B (2011b) Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat Clim Chang 1(1):42–45CrossRef
    Lobell DB, Sibley A, Ortiz-Monasterio JI (2012) Extreme heat effects on wheat senescence in India. Nat Clim Chang 2(3):186–189CrossRef
    Ma B, Li M, Song J, Wang C (2009) Review on high-temperature stress to rice. Chin J Agrometeorol 31:144–150 (in Chinese)
    Moriondo M, Giannakopoulos C, Bindi M (2011) Climate change impact assessment: the role of climate extremes in crop yield simulation. Clim Chang 104(3–4):679–701CrossRef
    Nakagawa H, Horie T, Matsui T (2003) Effects of climate change on rice production and adaptive technologies. In: Mew TW et al. (Eds.) Rice science: innovations and impact for livelihood. International Rice Research Institute. pp. 635–658
    QX/T 101–2009 (2009) Grade of chilling damage for rice and maize. Meteorological Press, Beijing (in Chinese)
    Rezaei EE, Webber H, Gaiser T, Naab J, Ewert F (2015) Heat stress in cereals: mechanisms and modelling. Eur J Agron 64:98–113CrossRef
    Seck PA, Diagne A, Mohanty S, Wopereis MC (2012) Crops that feed the world 7: rice. Food Secur 4(1):7–24CrossRef
    Shah F, Huang J, Cui K, Nie L, Shah T, Chen C, Wang K (2011) Impact of high-temperature stress on rice plant and its traits related to tolerance. J Agric Sci 149:545–556CrossRef
    Shuai J, Zhang Z, Tao F, Shi P (2015) How ENSO affects maize yields in China: understanding the impact mechanisms using a process-based crop model. Int J Climatol. doi:10.​1002/​joc.​4360
    Siebert S, Ewert F, Rezaei E, Kage R, Graß R (2014) Impact of heat stress on crop yield—on the importance of considering canopy temperature. Environ Res Lett 9(4):044012CrossRef
    Sun W, Huang Y (2011) Global warming over the period 1961–2008 did not increase high-temperature stress but did reduce low-temperature stress in irrigated rice across China. Agric For Meteorol 151(9):1193–1201CrossRef
    Tao F, Zhang Z (2013) Climate change, high-temperature stress, rice productivity, and water use in Eastern China: a new superensemble-based probabilistic projection. J Appl Meteorol Climatol 52:531–551CrossRef
    Tao F, Yokozawa M, Zhang Z (2009) Modelling the impacts of weather and climate variability on crop productivity over a large area: a new process-based model development, optimization, and uncertainties analysis. Agric For Meteorol 149:831–850CrossRef
    Tao F, Zhang Z, Zhang S, Zhu Z, Shi W (2012) Response of crop yields to climate trends since 1980 in China. Clim Res 54:233–247CrossRef
    Tao F, Zhang S, Zhang Z (2013) Changes in rice disasters across China in recent decades and the meteorological and agronomic causes. Reg Environ Chang 13(4):743–759CrossRef
    Teixeira EI, Fischer G, van Velthuizen H, Walter C, Ewert F (2013) Global hot-spots of heat stress on agricultural crops due to climate change. Agric For Meteorol 170:206–215CrossRef
    Wang S, Ma S, Chen L, Wang Q, Huang J (2009) Chilling injury. China Meteorological Press, Beijing (in Chinese)
    Wang P, Zhang Z, Song X, Chen Y, Wei X, Shi P, Tao F (2014a) Temperature variations and rice yields in China: historical contributions and future trends. Clim Chang 124:777–789CrossRef
    Wang P, Wei X, Zhang Z, Chen Y, Song X, Shi P, Tao F (2014b) A review of cold injury and heat damage to rice growth under global warming. Resour Sci 36:2316–2326 (in Chinese)
    Wheeler T, von Braun J (2013) Climate change impacts on global food security. Science 341:508–513CrossRef
    Yang X, Lin E, Ma S, Ju H, Guo L, Xiong W, Li Y, Xu Y (2007) Adaptation of agriculture to warming in Northeast China. Clim Chang 84(1):45–58CrossRef
    Yuan W, Xu B, Chen Z, Xia J, Xu W, Chen Y, Wu X, Fu Y (2015) Validation of China-wide interpolated daily climate variables from 1960 to 2011. Theor Appl Climatol 119:689–700CrossRef
    Zhang Q, Zhao Y, Wang C (2011) Study on the impact of high temperature damage to rice in the lower and middle reaches of the Yangtze River. J Catastrophol 26:57–62 (in Chinese)
    Zhang Z, Wang P, Chen Y, Song X, Wei X, Shi P (2014) Global warming over 1960–2009 did increase heat stress and reduce cold stress in the major rice-planting areas across China. Eur J Agron 59:49–56CrossRef
  • 作者单位:Pin Wang (1)
    Zhao Zhang (1)
    Yi Chen (1)
    Xing Wei (1)
    Boyan Feng (1)
    Fulu Tao (2)

    1. State Key Laboratory of Earth Surface Processes and Resources Ecology/Key Laboratory of Environmental Change and Natural Disaster, MOE/Academy of Disaster Reduction and Emergency Management, Beijing Normal University, Beijing, 100875, China
    2. Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Meteorology and Climatology
  • 出版者:Springer Netherlands
  • ISSN:1573-1480
文摘
Extreme temperature stress (ETS) is recognized as an important threat to the food supply in China. However, how much yield loss caused by ETS (YLETS) to the irrigated rice production still remains unclear. In this study, we provided a prototype for YLETS assessments by using a process-based crop model (MCWLA-Rice) with the ETS impacts explicitly parameterized, to help understand the spatio-temporal patterns of YLETS and the mechanism underlying the ETS impacts at a 0.5° × 0.5° grid scale in the major irrigated rice planting areas across China during 1981–2010. On the basis of the optimal 30 sets of parameters, the ensemble simulations indicated the following: Regions I (northeastern China) and III2 (the mid-lower reaches of the Yangtze River) were considered to be the most vulnerable areas to ETS, with the medium YLETS of 18.4 and 12.9 %, respectively. Furthermore, large YLETS values (>10 %) were found in some portions of Region II (the Yunnan-Guizhou Plateau), western Region III1 (the Sichuan Basin), the middle of Region IV_ER (southern China cultivated by early rice), and the west and southeast of Region IV_LR (southern China cultivated by late rice). Over the past several decades, a significant decrease in YLETS was detected in most of Region I and in northern Region IV_LR (with the medians of −0.53 and −0.28 % year−1, respectively). However, a significant increase was found in most of Region III (including III1 and III2) and in Region IV_ER, particularly in the last decade (2001–2010). Overall, reduced cold stress has improved the conditions for irrigated rice production across large parts of China. Nevertheless, to improve the accuracy of YLETS estimations, more accurate yield loss functions and multimodel ensembles should be developed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700