用户名: 密码: 验证码:
Mechanism of carotenoid coloration in the brightly colored plumages of broadbills (Eurylaimidae)
详细信息    查看全文
  • 作者:Richard O. Prum (1)
    Amy M. LaFountain (2)
    Christopher J. Berg (3)
    Michael J. Tauber (3)
    Harry A. Frank (2)
  • 关键词:Carotenoid metabolism ; Feather coloration ; High ; performance liquid chromatography ; Nuclear magnetic resonance ; Pigment analysis ; Resonance Raman spectroscopy
  • 刊名:Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:184
  • 期:5
  • 页码:651-672
  • 全文大小:1,790 KB
  • 参考文献:1. Bernhard K, Grosjean M (1995) Infrared spectroscopy. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids vol 1B: spectroscopy. Birkhauser Verlag, Basel, pp 117-34
    2. Britton G (1995) UV/visible spectroscopy. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids vol 1B: spectroscopy. Birkh?user Verlag, Basel, pp 13-2
    3. Britton G, Weesie RJ, Askin D, Warburton JD, Gallardo-Guerrero L, Jansen FJ, de Groot HJM, Lugtenburg J, Cornard J-P, Merlin J-C (1997) Carotenoid blues: structural studies on carotenoproteins. Pure Appl Chem 69:2075-084
    4. Britton G, Liaaen-Jensen S, Pfander H (2004) In: Carotenoids handbook. Birkh?user Verlag, Basel
    5. Buchecker R, Eugster CH (1979) Eine Suche nach 3-Epilutein (=(3R,3′S,6′R)-β, ε-Carotin-3,3-diol) und 3- O-Didehydrolutein (=(3R, 6′R)-3-Hydroxy-β, ε-carotin-3-on) in Eigelb, in Blüten von Caltha palustris und in Herbstbl?ttern. Helv Chim Acta 62:2817-824 in new window">CrossRef
    6. Christensson N, ?idek K, Magdaong NCM, LaFountain AM, Frank HA, Zigmantas D (2013) Origin of the bathochromic shift of astaxanthin in lobster protein: 2D electronic spectroscopy investigation of β-crustacyanin. J Phys Chem B 117:11209-1219 in new window">CrossRef
    7. Curry B, Palings I, Broek A, Pardoen JA, Mulder PPJ, Lugtenburg J et al (1984) Vibrational analysis of 13-cis-retinal. J Phys Chem 88:688-02 in new window">CrossRef
    8. Englert G (1995) NMR spectroscopy. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids vol 1B spectroscopy. Birkhauser, Basel, pp 147-59
    9. Enzell CR, Back S (1995) Mass spectrometry. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids vol 1B: spectroscopy. Birkhauser, Basel, pp 261-17
    10. Eugster CH (1995) Chemical derivatization: microscale tests for the presence of common functional groups in carotenoids. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids vol 1A: isolation and analysis. Birkh?user Verlag, Basel, pp 71-0
    11. Eyring G, Curry B, Broek A, Lugtenburg J, Mathies R (1982) Assignment and interpretation of hydrogen out-of-plane vibrations in the resonance Raman spectra of rhodopsin and bathorhodopsin. Biochemistry 21:384-93 in new window">CrossRef
    12. Gottlieb HE, Kotlyar V, Nudelman A (1997) NMR chemical shifts of common laboratory solvents as trace impurities. J Org Chem 62:7512-515 in new window">CrossRef
    13. Hackett SJ, Kimball RT, Reddy S, Bowie RCK, Braun EL, Braun MJ et al (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320:1763-768 in new window">CrossRef
    14. Hudon J (1991a) Unusual carotenoid use by the Western Tanager ( / Piranga ludoviciana) and its evolutionary implications. Can J Zool 69:2320-3111 in new window">CrossRef
    15. Hudon J (1991b) Unusual carotenoid use by the Western Tanager ( / Piranga ludoviciana) and its evolutionary implications. Can J Zool 69:2311-320 in new window">CrossRef
    16. Hudon J, Grether GF, Millie DF (2003) Marginal differentiation between the sexual and general carotenoid pigmentation of guppies ( / Poecilia reticulata) and a possible visual explanation. Physiol Biochem Zool 76:776-90 in new window">CrossRef
    17. Ilagan RP, Christensen RL, Chapp TW, Gibson GN, Pascher T, Polivka T et al (2005) Femtosecond time-resolved absorption spectroscopy of astaxanthin in solution and in α-crustacyanin. J Phys Chem A 109:3120-127 in new window">CrossRef
    18. Irestedt M, Ohlson JI, Zuccon D, K?llersj? M, Ericson PGP (2006) Nuclear DNA from old collections of avian study skins reveals the evolutionary history of the Old World suboscines (Aves, Passeriformes). Zoolog Scr 35:567-80 in new window">CrossRef
    19. Vetter W, Englert G, Rigassi N, Schwieter U (1971) Spectroscopic methods. In: Isler O (ed) Carotenoids. Birkh?user Verlag, Basel, pp 189-66
    20. Koyama Y (1995) Resonance Raman spectroscopy. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids vol 1B: spectroscopy. Birkh?user Verlag, Basel, pp 135-46
    21. Koyama Y, Fujii R (1999) Cis-trans carotenoids in photosynthesis: configurations, excited-state properties and physiological functions. In: Frank HA, Young AJ, Britton G, Cogdell RJ (eds) The photochemistry of carotenoids, vol 8. Kluwer Academic Publishers, Dordrecht, pp 161-88 in new window">CrossRef
    22. Koyama Y, Hashimoto H (1993) Spectroscopic studies of carotenoids in photosynthetic systems. In: Young AJ, Britton G (eds) Carotenoids in photosynthesis. Chapman and Hall, London, pp 327-08
    23. Koyama Y, Takatsuka I, Nakata M, Tasumi M (1988) Raman and infrared spectra of the all-trans, 7-cis, 9-cis, 13-cis and 15-cis isomers of b-carotene: key bands distinguishing stretched or terminal-bent configurations from central-bent configurations. J Raman Spectrosc 19:37-9 in new window">CrossRef
    24. Krawczyk S, Britton G (2001) A study of protein-carotenoid interactions in the astxanthin-protein crustacyanin by absorption and Stark spectroscopy; evidence for the presence of three spectrally distinct species. Biochim Biophys Acta 1544:301-10 in new window">CrossRef
    25. LaFountain AM, Kaligotla S, Cawley S, Riedl KM, Schwartz SJ, Frank HA et al (2010) Novel methoxy-carotenoids from the burgundy-colored plumage of the Pompadour Cotinga / Xipholena punicea. Arch Biochem Biophys 504:142-53 in new window">CrossRef
    26. McGraw KJ (2006a) Mechanics of carotenoid-based coloration. In: Hill GE, McGraw KJ (eds) Bird coloration vol 1: mechanisms and measurements. Harvard University Press, Cambridge, pp 177-42
    27. McGraw KJ (2006b) Mechanics of melanin-based coloration. In: Hill GE, McGraw KJ (eds) Bird coloration vol 1: mechanisms and measurements. Harvard University Press, Cambridge, pp 243-94
    28. McGraw KJ, Hill GE, Stradi R, Parker RS (2001) The influence of carotenoid acquisition and utilization on the maintenance of species-typical plumage pigmentation in the male American goldfinches ( / Carduelis tristis) and Northern cardinal ( / Cadinalis cardinalis). Physiol Biochem Zool 74:843-52 in new window">CrossRef
    29. McGraw KJ, Hudon J, Hill GE, Parker RS (2005) A simple and inexpensive chemical test for behavioral ecologists to determine the presence of carotenoid pigments in animal tissues. Behav Ecol Sociobiol 57:391-97 in new window">CrossRef
    30. Mendes-Pinto MM, LaFountain AM, Stoddard MC, Prum RO, Frank HA, Robert B (2012) Variation in carotenoid-protein interactions by bird feather proteins produces novel plumage coloration. J R Soc Interface 9:3338-350 in new window">CrossRef
    31. Merlin JC (1987) Resonance Raman analysis of astaxanthin–protein complexes. J Raman Spectrosc 18:519-23 in new window">CrossRef
    32. Mori Y, Yamano K, Hashimoto H (1996) Bistable aggregate of all-trans-astaxanthin in an aqueous solution. Chem Phys Lett 254:84-8 in new window">CrossRef
    33. Moyle RG, Chesser RT, Prum RO, Schikler P, Cracraft J (2006) Phylogeny and evolutionary history of old world suboscine birds (Aves: Eurylaimides). Am Mus Novit 3544:1-2 in new window">CrossRef
    34. Neugebauer J, Veldstra J, Buda F (2011) Theoretical spectroscopy of astaxanthin in crustacyanin proteins: absorption, circular dichroism, and nuclear magnetic resonance. J Phys Chem B 115:3216-225 in new window">CrossRef
    35. Prager M, Johansson EIA, Andersson S (2009) Differential ability of carotenoid C4-oxygenation in yellow and red bishop species ( / Euplectes spp.). Comp Biochem Physiol B 154:373-80 in new window">CrossRef
    36. Prum RO, LaFountain AM, Berro J, Stoddard MC, Frank HA (2012a) Molecular diversity, metabolic transformation, and evolution of carotenoid feather pigments in cotingas (Aves: Cotingidae). J Comp Physiol B 182:1095-116 in new window">CrossRef
    37. Prum RO, LaFountain AM, Berro J, Stoddard MC, Frank HA (2012b) Molecular diversity, metabolic transformation, and evolution of carotenoid feather pigments in cotingas (Aves: Cotingidae). J Comp Physiol B 182:1095-116 in new window">CrossRef
    38. Rimai L, Heyde ME, Gill D (1973) Vibrational spectra of some carotenoids and related linear polyenes. A Raman spectroscopic study. J Am Chem Soc 95:4493-501 in new window">CrossRef
    39. Robert B (1999) The electronic structure, stereochemistry and resonance Raman spectroscopy of carotenoids. In: Frank HA, Young AJ, Britton G, Cogdell RJ (eds) Advances in photosynthesis, vol 8. Kluwer Academic Publishers, Dordrecht, pp 189-01
    40. Robert B (2009) Resonance Raman spectroscopy. Photosynth Res 101:147-55 in new window">CrossRef
    41. Saito S, Tasumi M, Eugster CH (1983) Resonance Raman-spectra (5800-40 CM-1) of all-trans and 15-cis isomers of beta-carotene in the solid-state and in solution-measurements with various laser lines from ultraviolet to red. J Raman Spectrosc 14:299-09 in new window">CrossRef
    42. Salares VR, Young NM, Carey PR, Bernstein HJ (1977) Excited state (exciton) interactions in polyene aggregates. J Raman Spectrosc 6:282-88 in new window">CrossRef
    43. Salares VR, Young NM, Bernstein HJ, Carey PR (1979) Mechanisms of spectral shifts in lobster carotenoproteins—the resonance Raman spectra of ovoverdin and the crustacyanins. Biochim Biophys Acta 576:176-91 in new window">CrossRef
    44. Saranathan V, Forster JD, Noh H, Liew SF, Mochrie SGJ, Cao H et al (2012) Structure and optical function of amorphous photonic nanostructures from avian feather barbs: a comparative small angle X-ray scattering (SAXS) analysis of 229 bird species. J R Soc Interface?9:2563-580
    45. Schaffer HE, Chance RR, Silbey RJ, Knoll K, Schrock RR (1991) Conjugation length dependence of Raman scattering in a series of linear polyenes: implications for polyacetylene. J Chem Phys 94:4161-170 in new window">CrossRef
    46. Schiedt K, Liaaen-Jensen S (1995) Isolation and analysis. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids vol 1A: isolation and analysis. Birkh?user Verlag, Basel, pp 81-07
    47. Stoddard MC, Prum RO (2011) How colorful are birds? Evolution of the avian plumage color gamut. Behav Ecol 22:1042-052 in new window">CrossRef
    48. Stradi R (1999) Pigmenti e sistematica degli uccelli. In: Brambilla L, Canali G, Mannucci E, Massa R, Saino N, Stradi R, Zerbi G (eds) Colori in volo: il piumaggio degli ucceli. Universita degli Studi di Milano, Milan, pp 117-46
    49. Stradi R, Celentano G, Nava D (1995a) Separation and identification of carotenoids in bird’s plumage by high-performance liquid chromatography-diode-array detection. J Chromatogr B 670:337-48 in new window">CrossRef
    50. Stradi R, Celentano G, Rossi E, Rovati G, Pastore M (1995b) Carotenoids in bird plumage: the carotenoid pattern in a series of / Paleartic Carduelinae. Comp Biochem Physiol 110B:131-43 in new window">CrossRef
    51. Stradi R, Rossi E, Celentano G, Bellardi B (1996) Carotenoids in bird plumage: the pattern in three / Loxia species and in / Pinicola enucleator. Comp Biochem Physiol 113B:427-32 in new window">CrossRef
    52. Stradi R, Celentano G, Boles M, Mercato F (1997) Carotenoids in bird plumage: the pattern in a series of red-pigmented Carduelinae. Comp Biochem Physiol 117B:85-1 in new window">CrossRef
    53. Stradi R, Hudon J, Celentano G, Pini E (1998) Carotenoids in bird plumage: the complement of yellow and red pigments in true woodpeckers (Picinae). Comp Biochem Physiol B: Biochem Mol Biol 120:223-30 in new window">CrossRef
    54. Strambi A, Durbeej B (2009) Excited-state modeling of the astaxanthin dimer predicts a minor contribution from exciton coupling to the bathochromic shift in crustacyanin. J Phys Chem B 113:5311-317 in new window">CrossRef
    55. van Breemen RB, Dong L, Pajkovic ND (2012) Atmospheric pressure chemical ionization tandem mass spectrometry of carotenoids. Int J Mass Spectrom 312:163-72 in new window">CrossRef
    56. van Wijk AA, Spaans A, Uzunbajakava N, Otto C, de Groot HJ, Lugtenburg J et al (2005) Spectroscopy and quantum chemical modeling reveal a predominant contribution of excitonic interactions to the bathochromic shift in alpha-crustacyanin, the blue carotenoprotein in the carapace of the lobster / Homarus gammarus. J Am Chem Soc 127:1438-445 in new window">CrossRef
    57. Veronelli M, Zerbi G, Stradi R (1995) In-situ resonance Raman-spectra of carotenoids in birds feathers. J Raman Spectrosc 26:683-92 in new window">CrossRef
    58. Wang C, Berg CJ, Hsu C-C, Merrill BA, Tauber MJ (2012) Characterization of carotenoid aggregates by steady-state optical spectroscopy. J Phys Chem B 116:10617-0630 in new window">CrossRef
    59. Weesie RJ, Merlin JC, De Groot HJM, Britton G, Lugtenberg J, Jansen FJ et al (1999a) Resonance Raman spectroscopy and quantum chemical modeling studies of protein-astaxanthin interactions in a-crustacyanin (major blue carotenoprotein complex in carapace of lobster, / Homarus gammarus). Biospectroscopy 5:358-70 in new window">CrossRef
    60. Weesie RJ, Merlin JC, Lugtenberg J, Britton G, Jansen FJ, Cornard JP (1999b) Semiempirical and Raman spectroscopic studies of carotenoids. Biospectroscopy 5:19-3 in new window">CrossRef
    61. Zagalsky PF (1985) Invertebrate carotenoproteins. In: Law JH, Rilling HC (eds) Methods in enzymology, vol III: steroids and isoprenoids part B. Academic Press, New York, pp 216-47
    62. Zagalsky PF (1995) Carotenoproteins. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol 1A. Birkhauser, Basel, pp 287-94
    63. Zagalsky PF (2003) β-Crustacyanin, the blue-purple carotenoprotein of lobster carapace: consideration of the bathochromic shift of the protein-bound astaxanthin. Acta Crystallogr D D59:1529-531 in new window">CrossRef
  • 作者单位:Richard O. Prum (1)
    Amy M. LaFountain (2)
    Christopher J. Berg (3)
    Michael J. Tauber (3)
    Harry A. Frank (2)

    1. Department of Ecology and Evolutionary Biology and Peabody Museum of Natural History, Yale University, 21 Sachem Street, New Haven, CT, 06511, USA
    2. Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT, 06269, USA
    3. Department of Chemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
  • ISSN:1432-136X
文摘
The plumage carotenoids of six species from five genera of broadbills (Eurylaimidae) have been examined. These plumages are crimson, violet, purple-maroon, or yellow. Two genera also have brilliant green plumages that are produced by a combination of structural coloration and unknown carotenoids. Six different carotenoids from nine different plumage patches were identified, including two previously unknown molecules, using high-performance liquid chromatography, mass spectrometry, and MS/MS fragment analysis. The yellow pigment in Eurylaimus javanicus and Eurylaimus ochromalus is identified as the novel carotenoid, 7,8-dihydro-3-dehydro-lutein. The yellow and green plumages of Psarisomus dalhousiae contain the unmodified dietary carotenoids lutein and zeaxanthin. The brilliant green feathers of Calyptomena viridis contain a mixture of lutein and two other xanthophylls that have previously been found only in woodpeckers (Picinae). The crimson and violet colors of Cymbirhynchus, Sarcophanops, and Eurylaimus are produced by a novel pigment, which is identified as 2,3-didehydro-papilioerythrinone. The molecular structure of this carotenoid was confirmed using 1H nuclear magnetic resonance, correlated two-dimensional spectroscopy, and two-dimensional nuclear Overhauser effect spectroscopy. Resonance Raman (rR) spectroscopy carried out at room and low temperatures was used to probe the configuration and conformation of 2,3-didehydro-papilioerythrinone in situ within crimson C. macrorhynchos and purple-red E. javanicus feathers. The rR spectra reveal that the pigment is in an all-trans configuration and appears to be relatively planar in the feathers. The likely metabolic pathways for the production of broadbill carotenoids from dietary precursors are discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700