用户名: 密码: 验证码:
Evidence for lithium-aluminosilicate supersaturation of pegmatite-forming melts
详细信息    查看全文
  • 作者:Victoria Maneta ; Don R. Baker ; William Minarik
  • 关键词:Granitic pegmatites ; Lithium ; Supersaturation ; Moblan ; Spodumene ; Petalite
  • 刊名:Contributions to Mineralogy and Petrology
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:170
  • 期:1
  • 全文大小:1,495 KB
  • 参考文献:Baker DR (1998) The escape of pegmatite dikes from granitic plutons: constraints from new models of viscosity and dike propagation. Can Mineral 36:255-63
    Baker DR (2004) Piston–cylinder calibration at 400 to 500?MPa: a comparison of using water solubility in albite melt and NaCl melting. Am Mineral 89:1553-556
    Baker DR, Alletti M (2012) Fluid saturation and volatile partitioning between melts and hydrous fluids in crustal magmatic systems: the contribution of experimental measurements and solubility models. Earth-Sci Rev 114:298-24View Article
    Bartels A, Holtz F, Linnen RL (2010) Solubility of manganotantalite and manganocolumbite in pegmatitic melts. Am Mineral 95:537-44View Article
    Bartels A, Vetere F, Holtz F, Behrens H, Linnen RL (2011) Viscosity of flux-rich pegmatitic melts. Contrib Mineral Petrol 162:51-0View Article
    Cameron EN, Jahns RH, McNair AH, Page LR (1949) Internal structure of granitic pegmatites. Econ Geol Monogr 2
    ?erny P (1982) Petrogenesis of granitic pegmatites. In: ?erny P (ed) Granitic pegmatites in science and industry, Mineral Assoc Can, Short Course Handbook 8, pp 405-61
    ?erny P, Ercit TS (2005) The classification of granitic pegmatites revisited. Can Mineral 43:2005-026View Article
    Che XD, Linnen RL, Wang RC, Aseri A, Thibault Y (2013) Tungsten solubility in evolved granitic melts: an evaluation of magmatic wolframite. Geochim Cosmochim Acta 106:84-8View Article
    Dingwell DB, Romano C, Hess KU (1996) The effect of water on the viscosity of a haplogranitic melt under P–T–X conditions relevant to silicic volcanism. Contrib Mineral Petrol 124:19-8View Article
    Evensen JM, London D, Wendlandt RF (1999) Solubility and stability of beryl in granitic melts. Am Mineral 84:733-45
    Glyuk DS, Trufanova LG (1977) Melting at 1000?kg/cm2 in a granite–H2O system with the addition of HF, HCl, and Li, Na, and K fluorides, chlorides, and hydroxides. Geochem Intern 14:28-6
    Grosjean C, Miranda PH, Perrin M, Poggi P (2012) Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renew Sustain Energy Rev 16:1735-744View Article
    Harrison TM, Watson EB (1983) Kinetics of zircon dissolution and zirconium diffusion in granitic melts of variable water content. Contrib Mineral Petrol 84:66-2View Article
    Harrison TM, Watson EB (1984) The behavior of apatite during crustal anatexis: equilibrium and kinetic considerations. Geochim Cosmochim Acta 48:1467-477View Article
    Heinrich EW (1953) Zoning in pegmatite districts. Am Mineral 38:68-7
    Hess PC (1995) Thermodynamic mixing properties and the structure of silicate melts. In: Stebbins JF, McMillan PF, Dingwell DB (eds) Structure, dynamics and properties of silicate melts. Mineral Soc Am, Washington, DC, Reviews in Mineralogy 32, pp 145-90
    Hess KU, Dingwell DB, Webb SL (1995) The influence of excess alkalis on the viscosity of a haplogranitic melt. Am Mineral 80:297-04
    Holloway JR, Wood BJ (1988) Simulating the earth: experimental geochemistry. Unwin Hyman Ltd, LondonView Article
    Hudon P, Baker DR (2002a) The nature of phase separation in binary oxide melts and glasses: I. Silicate systems. J Non-Cryst Solids 303:299-45View Article
    Hudon P, Baker DR (2002b) The nature of phase separation in binary oxide melts and glasses: II. Selective solution mechanism. J Non-Cryst Solids 303:346-53View Article
    Hudon P, Baker DR, Toft PB (1994) A high-temperature assembly for 1.91-cm (3/4-in.) piston cylinder apparatus. Am Mineral 79:145-47
    Kesler SE, Gruber PW, Medina PA, Keoleian GA, Everson MP, Wallington TJ (2012) Global lithium resources: relative importance of pegmatite, brine and other deposits. Ore Geol Rev 48:55-9View Article
    Lentz DR, Fowler AD (1992) A dynamic model for graphic quartz–feldspar intergrowths in granitic pegmatites in the southwestern Grenville Province. Am Mineral 30:571-85
    Linnen RL (1998) The solubility of Nb–Ta–Zr–Hf–W in granitic melts with Li and Li?+?F: constraints for mineralization in rare metal granites and pegmatites. Econ Geol 93:1013-025View Article
    Linnen RL, Van Lichtervelde M, ?erny P (2012) Granitic pegmatites as sources of strategic metals. Elements 8:275-80View Article
    London D (1984) Experimental phase equilibria in the system LiAlSiO4–SiO2–H2O: a petrogenetic grid for lithium-rich pegmatites. Am Mineral 69:995-004
    London D (1992) The application of experimental petrology to the genesis and crystallization of granitic pegmatites. Can Mineral 30:499-40
    London D (2005) Granitic pegmatites: an assessment of current concepts and directions for the future. Lithos 80:281-03View Article
    London D (2008) Pegmatites. Can Mineral, Special Publication 10, Mineralogical Association of Canada
    London D (2009) The origin of primary textures in granitic pegmatites. Can Mineral 47:697-24View Article
    London D, Burt DM (1982) Lithi
  • 作者单位:Victoria Maneta (1)
    Don R. Baker (1)
    William Minarik (1)

    1. Department of Earth and Planetary Sciences, McGill University, 3450 University Street, Montreal, QC, H3A 0E8, Canada
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geology
    Mineral Resources
    Mineralogy
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0967
文摘
New experimental data on the solubility of lithium (Li) at spodumene (LiAlSi2O6) and petalite (LiAlSi4O10) saturation at 500?MPa and 550-50?°C reveal evidence for lithium supersaturation of pegmatite-forming melts before the formation of Li-aluminosilicates. The degree of Li enrichment in granitic melts can reach ~11,000?ppm above the saturation value before the crystallization of Li-aluminosilicate minerals at lower temperatures. Comparison of the experimental results with the spodumene-rich Moblan pegmatite (Quebec) is consistent with extreme Li enrichment of the pegmatite-forming melt prior to emplacement, which cannot be explained with equilibrium crystallization of Li-aluminosilicates from a common granitic melt. The results of this study support the model of disequilibrium fractional crystallization through liquidus undercooling as the most plausible mechanism for the generation of such Li-rich ore resources.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700