用户名: 密码: 验证码:
Regulation of cellulase expression, sporulation, and morphogenesis by velvet family proteins in Trichoderma reesei
详细信息    查看全文
  • 作者:Kuimei Liu ; Yanmei Dong ; Fangzhong Wang…
  • 关键词:Velvet family ; Sporulation ; Cellulase regulation ; Morphogenesis ; Trichoderma reesei
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:100
  • 期:2
  • 页码:769-779
  • 全文大小:1,950 KB
  • 参考文献:Ahmed YL, Gerke J, Park HS, Bayram Ö, Neumann P, Ni M, Dickmanns A, Kim SC, Yu JH, Braus GH, Ficner R (2013) The velvet family of fungal regulators contains a DNA-binding domain structurally similar to NF-ĸB. PLoS Biol 11(12):e1001750. doi:10.​1371/​journal.​pbio.​1001750 PubMed PubMedCentral CrossRef
    Aro N, Ilmén M, Saloheimo A, Penttilä M (2003) ACEI of Trichoderma reesei is a repressor of cellulase and xylanase expression. Appl Environ Microbiol 69(1):56–65. doi:10.​1128/​AEM.​69.​1.​56-65.​2003 PubMed PubMedCentral CrossRef
    Aro N, Pakula T, Penttilä M (2005) Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev 29(4):719–739. doi:10.​1016/​j.​femsre.​2004.​11.​006 PubMed CrossRef
    Aro N, Saloheimo A, Ilmén M, Penttilä M (2001) ACEII, a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei. J Biol Chem 276(26):24309–24314. doi:10.​1074/​jbc.​M003624200 PubMed CrossRef
    Bayram Ö, Braus GH (2012) Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol Rev 36(1):1–24. doi:10.​1111/​j.​1574-6976.​2011.​00285.​x PubMed CrossRef
    Bayram Ö, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon NJ, Keller NP, Yu JH, Braus GH (2008) VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320(5882):1504–1506. doi:10.​1126/​science.​1155888 PubMed CrossRef
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    Brakhage AA (2013) Regulation of fungal secondary metabolism. Nat Rev Microbiol 11(1):21–32. doi:10.​1038/​Nrmicro2916 PubMed CrossRef
    Calvo AM (2008) The VeA regulatory system and its role in morphological and chemical development in fungi. Fungal Genet Biol 45(7):1053–1061. doi:10.​1016/​j.​fgb.​2008.​03.​014 PubMed CrossRef
    Castellanos F, Schmoll M, Martínez P, Tisch D, Kubicek CP, Herrera-Estrella A, Esquivel-Naranjo EU (2010) Crucial factors of the light perception machinery and their impact on growth and cellulase gene transcription in Trichoderma reesei. Fungal Genet Biol 47(5):468–476. doi:10.​1016/​j.​fgb.​2010.​02.​001 PubMed CrossRef
    Cheng Y, Song X, Qin Y, Qu Y (2009) Genome shuffling improves production of cellulase by Penicillium decumbens JU-A10. J Appl Microbiol 107(6):1837–1846. doi:10.​1111/​j.​1365-2672.​2009.​04362.​x PubMed CrossRef
    Chettri P, Calvo AM, Cary JW, Dhingra S, Guo YA, McDougal RL, Bradshaw RE (2012) The veA gene of the pine needle pathogen Dothistroma septosporum regulates sporulation and secondary metabolism. Fungal Genet Biol 49(2):141–151. doi:10.​1016/​j.​fgb.​2011.​11.​009 PubMed CrossRef
    Cochet N, Tyagi RD, Ghose TK, Lebeault JM (1984) ATP measurement for cellulase production control. Biotechnol Lett 6:155–160CrossRef
    Fang X, Yano S, Inoue H, Sawayama S (2009) Strain improvement of Acremonium cellulolyticus for cellulase production by mutation. J Biosci Bioeng 107(3):256–261. doi:10.​1016/​j.​jbiosc.​2008.​11.​022 PubMed CrossRef
    Friedl MA, Schmoll M, Kubicek CP, Druzhinina IS (2008) Photostimulation of Hypocrea atroviridis growth occurs due to a cross-talk of carbon metabolism, blue light receptors and response to oxidative stress. Microbiology 154:1229–1241. doi:10.​1099/​mic.​0.​2007/​014175-0 PubMed CrossRef
    Gruber F, Visser J, Kubicek CP, de Graaff LH (1990) The development of a heterologous transformation system for the cellulolytic fungus Trichoderma reesei based on a pyrG-negative mutant strain. Curr Genet 18(1):71–76
    Häkkinen M, Valkonen MJ, Westerholm-Parvinen A, Aro N, Arvas M, Vitikainen M, Penttilä M, Saloheimo M, Pakula TM (2014) Screening of candidate regulators for cellulase and hemicellulase production in Trichoderma reesei and identification of a factor essential for cellulase production. Biotechnol Biofuels 7(1):14. doi:10.​1186/​1754-6834-7-14 PubMed PubMedCentral CrossRef
    Hansen W, Yourassowsky E (1984) Detection of beta-glucuronidase in lactose-fermenting members of the family Enterobacteriaceae and its presence in bacterial urine cultures. J Clin Microbiol 20(6):1177–1179
    He J, Han G, Chen D (2013) Insights into enzyme secretion by filamentous fungi: comparative proteome analysis of Trichoderma reesei grown on different carbon sources. J Proteome 89:191–201. doi:10.​1016/​j.​jprot.​2013.​06.​014 CrossRef
    Hoff B, Kamerewerd J, Sigl C, Mitterbauer R, Zadra I, Kürnsteiner H, Kück U (2010) Two components of a velvet-like complex control hyphal morphogenesis, conidiophore development, and penicillin biosynthesis in Penicillium chrysogenum. Eukaryot Cell 9(8):1236–1250. doi:10.​1128/​Ec.​00077-10 PubMed PubMedCentral CrossRef
    Hu Y, Liu G, Li Z, Qin Y, Qu Y, Song X (2013) G protein-cAMP signaling pathway mediated by PGA3 plays different roles in regulating the expressions of amylases and cellulases in Penicillium decumbens. Fungal Genet Biol 58–59:62–70. doi:10.​1016/​j.​fgb.​2013.​08.​002 PubMed CrossRef
    Jiang J, Yun Y, Liu Y, Ma Z (2012) FgVELB is associated with vegetative differentiation, secondary metabolism and virulence in Fusarium graminearum. Fungal Genet Biol 49(8):653–662. doi:10.​1016/​j.​fgb.​2012.​06.​005 PubMed CrossRef
    Karimi Aghcheh R, Németh Z, Atanasova L, Fekete E, Paholcsek M, Sándor E, Aquino B, Druzhinina IS, Karaffa L, Kubicek CP (2014) The VELVET A orthologue VEL1 of Trichoderma reesei regulates fungal development and is essential for cellulase gene expression. PLoS One 9(11):e112799. doi:10.​1371/​journal.​pone.​0112799 PubMed PubMedCentral CrossRef
    Kato N, Brooks W, Calvo AM (2003) The expression of sterigmatocystin and penicillin genes in Aspergillus nidulans is controlled by veA, a gene required for sexual development. Eukaryot Cell 2(6):1178–1186. doi:10.​1128/​Ec.​2.​6.​1178-1186.​2003 PubMed PubMedCentral CrossRef
    Kim HS, Han KY, Kim KJ, Han DM, Jahng KY, Chae KS (2002) The veA gene activates sexual development in Aspergillus nidulans. Fungal Genet Biol 37(1):72–80. doi:10.​1016/​S1087-1845(02)00029-4 PubMed CrossRef
    Kopke K, Hoff B, Bloemendal S, Katschorowski A, Kamerewerd J, Kück U (2013) Members of the Penicillium chrysogenum velvet complex play functionally opposing roles in the regulation of penicillin biosynthesis and conidiation. Eukaryot Cell 12(2):299–310. doi:10.​1128/​Ec.​00272-12 PubMed PubMedCentral CrossRef
    Kubicek CP, Mikus M, Schuster A, Schmoll M, Seiboth B (2009) Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnol Biofuels 2:19. doi:10.​1186/​1754-6834-2-19 PubMed PubMedCentral CrossRef
    Kuhls K, Lieckfeldt E, Samuels G, Kovacs W, Meyer W, Petrini O, Gams W, Börner T, Kubicek CP (1996) Molecular evidence that the asexual industrial fungus Trichoderma reesei is a clonal derivative of the ascomycete Hypocrea jecorina. Proc Natl Acad Sci 93(15):7755–7760PubMed PubMedCentral CrossRef
    Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and clustal X version 2.0. Bioinformatics 23(21):2947–2948. doi:10.​1093/​bioinformatics/​btm404 PubMed CrossRef
    Li Z, Du C, Zhong Y, Wang T (2010) Development of a highly efficient gene targeting system allowing rapid genetic manipulations in Penicillium decumbens. Appl Microbiol Biotechnol 87(3):1065–1076. doi:10.​1007/​s00253-010-2566-7 PubMed CrossRef
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25(4):402–408. doi:10.​1006/​meth.​2001.​1262 PubMed CrossRef
    López-Berges MS, Hera C, Sulyok M, Schäfer K, Capilla J, Guarro J, Di Pietro A (2013) The velvet complex governs mycotoxin production and virulence of Fusarium oxysporum on plant and mammalian hosts. Mol Microbiol 87(1):49–65. doi:10.​1111/​Mmi.​12082 PubMed CrossRef
    Marchler-Bauer A, Bryant SH (2004) CD-Search: protein domain annotations on the fly. Nucleic Acids Res 32:W327–W331. doi:10.​1093/​Nar/​Gkh454 PubMed PubMedCentral CrossRef
    Merhej J, Urban M, Dufresne M, Hammond-Kosack KE, Richard-Forget F, Barreau C (2012) The velvet gene, FgVe1, affects fungal development and positively regulates trichothecene biosynthesis and pathogenicity in Fusarium graminearum. Mol Plant Pathol 13(4):363–374. doi:10.​1111/​j.​1364-3703.​2011.​00755.​x PubMed CrossRef
    Miettinen-Oinonen A, Suominen P (2002) Enhanced production of Trichoderma reesei endoglucanases and use of the new cellulase preparations in producing the stonewashed effect on denim fabric. Appl Environ Microbiol 68(8):3956–3964. doi:10.​1128/​Aem.​68.​8.​3956-3964.​2002 PubMed PubMedCentral CrossRef
    Mooney JL, Yager LN (1990) Light is required for conidiation in Aspergillus nidulans. Genes Dev 4(9):1473–1482PubMed CrossRef
    Mukherjee PK, Kenerley CM (2010) Regulation of morphogenesis and biocontrol properties in Trichoderma virens by a VELVET protein, Vel1. Appl Environ Microbiol 76(7):2345–2352. doi:10.​1128/​AEM.​02391-09 PubMed PubMedCentral CrossRef
    Park HS, Yu JH (2012) Genetic control of asexual sporulation in filamentous fungi. Curr Opin Microbiol 15(6):669–677. doi:10.​1016/​j.​mib.​2012.​09.​006 PubMed CrossRef
    Park HS, Ni M, Jeong KC, Kim YH, Yu JH (2012) The role, interaction and regulation of the velvet regulator VelB in Aspergillus nidulans. PLoS One 7(9). doi:10.​1371/​journal.​pone.​0045935
    Park HS, Nam TY, Han KH, Kim SC, Yu JH (2014) VelC positively controls sexual development in Aspergillus nidulans. PLoS One 9(2):e89883. doi:10.​1371/​journal.​pone.​0089883 PubMed PubMedCentral CrossRef
    Portnoy T, Margeot A, Seidl-Seiboth V, Le Crom S, Ben Chaabane F, Linke R, Seiboth B, Kubicek CP (2011) Differential regulation of the cellulase transcription factors XYR1, ACE2, and ACE1 in Trichoderma reesei strains producing high and low levels of cellulase. Eukaryot Cell 10(2):262–271. doi:10.​1128/​EC.​00208-10 PubMed PubMedCentral CrossRef
    Sarikaya Bayram Ö, Bayram Ö, Valerius O, Park HS, Irniger S, Gerke J, Ni M, Han KH, Yu JH, Braus GH (2010) LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity. PLoS Genet 6(12):e1001226. doi:10.​1371/​journal.​pgen.​1001226 PubMed PubMedCentral CrossRef
    Schmoll M, Franchi L, Kubicek CP (2005) Envoy, a PAS/LOV domain protein of Hypocrea jecorina (anamorph Trichoderma reesei), modulates cellulase gene transcription in response to light. Eukaryot Cell 4(12):1998–2007. doi:10.​1128/​Ec.​4.​12.​1998-2007.​2005 PubMed PubMedCentral CrossRef
    Schuster A, Tisch D, Seidl-Seiboth V, Kubicek CP, Schmoll M (2012) Roles of protein kinase A and adenylate cyclase in light-modulated cellulase regulation in Trichoderma reesei. Appl Environ Microbiol 78(7):2168–2178. doi:10.​1128/​Aem.​06959-11 PubMed PubMedCentral CrossRef
    Seiboth B, Herold S, Kubicek CP (2012a) Metabolic engineering of inducer formation for cellulase and hemicellulase gene expression in Trichoderma reesei. Subcell Biochem 64:367–390. doi:10.​1007/​978-94-007-5055-5_​18 PubMed CrossRef
    Seiboth B, Karimi RA, Phatale PA, Linke R, Hartl L, Sauer DG, Smith KM, Baker SE, Freitag M, Kubicek CP (2012b) The putative protein methyltransferase LAE1 controls cellulase gene expression in Trichoderma reesei. Mol Microbiol 84(6):1150–1164. doi:10.​1111/​j.​1365-2958.​2012.​08083.​x PubMed PubMedCentral CrossRef
    Spröte P, Brakhage AA (2007) The light-dependent regulator velvet A of Aspergillus nidulans acts as a repressor of the penicillin biosynthesis. Arch Microbiol 188(1):69–79. doi:10.​1007/​s00203-007-0224-y PubMed CrossRef
    Strauss J, Reyes-Dominguez Y (2011) Regulation of secondary metabolism by chromatin structure and epigenetic codes. Fungal Genet Biol 48(1):62–69. doi:10.​1016/​j.​fgb.​2010.​07.​009 PubMed PubMedCentral CrossRef
    Strauss J, Mach RL, Zeilinger S, Hartler G, Stöffler G, Wolschek M, Kubicek CP (1995) Crel, the carbon catabolite repressor protein from Trichoderma reesei. FEBS Lett 376(1):103–107PubMed CrossRef
    Stricker AR, Grosstessner-Hain K, Würleitner E, Mach RL (2006) Xyr1 (xylanase regulator 1) regulates both the hydrolytic enzyme system and D-xylose metabolism in Hypocrea jecorina. Eukaryot Cell 5(12):2128–2137. doi:10.​1128/​Ec.​00211-06 PubMed PubMedCentral CrossRef
    Stricker AR, Mach RL, de Graaff LH (2008) Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei). Appl Microbiol Biotechnol 78(2):211–220. doi:10.​1007/​s00253-007-1322-0 PubMed CrossRef
    Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA 4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599. doi:10.​1093/​molbev/​msm092 PubMed CrossRef
    Teeri T, Salovuori I, Knowles J (1983) The molecular cloning of the major cellulase gene from Trichoderma reesei. Nat Biotechnol 1(8):696–699. doi:10.​1038/​nbt1083-696 CrossRef
    Tisch D, Kubicek CP, Schmoll M (2011) New insights into the mechanism of light modulated signaling by heterotrimeric G-proteins: ENVOY acts on gna1 and gna3 and adjusts cAMP levels in Trichoderma reesei (Hypocrea jecorina). Fungal Genet Biol 48(6):631–640. doi:10.​1016/​j.​fgb.​2010.​12.​009 PubMed PubMedCentral CrossRef
    Vu BV, Pham KTM, Nakayashiki H (2013) Substrate-induced transcriptional activation of the MoCel7C cellulase gene is associated with methylation of histone H3 at lysine 4 in the rice blast fungus Magnaporthe oryzae. Appl Environ Microbiol 79(21):6823–6832. doi:10.​1128/​AEM.​02082-13 PubMed PubMedCentral CrossRef
    Wang F, Liang Y, Wang M, Yang H, Liu K, Zhao Q, Fang X (2013a) Functional diversity of the p24γ homologue Erp reveals physiological differences between two filamentous fungi. Fungal Genet Biol 61:15–22. doi:10.​1016/​j.​fgb.​2013.​08.​017 PubMed CrossRef
    Wang M, Zhao Q, Yang J, Jiang B, Wang F, Liu K, Fang X (2013b) A mitogen-activated protein kinase Tmk3 participates in high osmolarity resistance, cell wall integrity maintenance and cellulase production regulation in Trichoderma reesei. PLoS One 8(8):e72189. doi:10.​1371/​journal.​pone.​ 0072189 PubMed PubMedCentral CrossRef
    Wang M, Sun X, Zhu C, Xu Q, Ruan R, Yu D, Li H (2015) PdbrlA, PdabaA and PdwetA control distinct stages of conidiogenesis in Penicillium digitatum. Res Microbiol 166(1):56–65. doi:10.​1016/​j.​resmic.​2014.​12.​003 PubMed CrossRef
    Wiemann P, Brown DW, Kleigrewe K, Bok JW, Keller NP, Humpf HU, Tudzynski B (2010) FfVel1 and FfLae1, components of a velvet-like complex in Fusarium fujikuroi, affect differentiation, secondary metabolism and virulence. Mol Microbiol 77(4):972–994. doi:10.​1111/​j.​1365-2958.​2010.​07263.​x PubMed PubMedCentral
    Xin Q, Gong Y, Lv X, Chen G, Liu W (2013) Trichoderma reesei histone acetyltransferase Gcn5 regulates fungal growth, conidiation, and cellulase gene expression. Curr Microbiol 67(5):580–589. doi:10.​1007/​ s00284-013-0396-4 PubMed CrossRef
    Zhang G, Hartl L, Schuster A, Polak S, Schmoll M, Wang T, Seidl V, Seiboth B (2009) Gene targeting in a nonhomologous end joining deficient Hypocrea jecorina. J Biotechnol 139(2):146–151. doi:10.​1016/​j.​jbiotec.​2008.​10.​007 CrossRef
  • 作者单位:Kuimei Liu (1)
    Yanmei Dong (1)
    Fangzhong Wang (1)
    Baojie Jiang (1)
    Mingyu Wang (1)
    Xu Fang (1)

    1. State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250100, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0614
文摘
Homologs of the velvet protein family are encoded by the ve1, vel2, and vel3 genes in Trichoderma reesei. To test their regulatory functions, the velvet protein-coding genes were disrupted, generating Δve1, Δvel2, and Δvel3 strains. The phenotypic features of these strains were examined to identify their functions in morphogenesis, sporulation, and cellulase expression. The three velvet-deficient strains produced more hyphal branches, indicating that velvet family proteins participate in the morphogenesis in T. reesei. Deletion of ve1 and vel3 did not affect biomass accumulation, while deletion of vel2 led to a significantly hampered growth when cellulose was used as the sole carbon source in the medium. The deletion of either ve1 or vel2 led to the sharp decrease of sporulation as well as a global downregulation of cellulase-coding genes. In contrast, although the expression of cellulase-coding genes of the ∆vel3 strain was downregulated in the dark, their expression in light condition was unaffected. Sporulation was hampered in the ∆vel3 strain. These results suggest that Ve1 and Vel2 play major roles, whereas Vel3 plays a minor role in sporulation, morphogenesis, and cellulase expression. Keywords Velvet family Sporulation Cellulase regulation Morphogenesis Trichoderma reesei

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700