用户名: 密码: 验证码:
Minimal Model of Plankton Systems Revisited with Spatial Diffusion and Maturation Delay
详细信息    查看全文
  • 作者:Jiantao Zhao ; Jianjun Paul Tian ; Junjie Wei
  • 关键词:Diffusive plankton ecosystem ; Hopf bifurcation ; Stability ; Delay
  • 刊名:Bulletin of Mathematical Biology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:78
  • 期:3
  • 页码:381-412
  • 全文大小:1,085 KB
  • 参考文献:Allan JD (1976) Life history patterns in zooplankton. Am Nat 110:165–180CrossRef
    Anderson D (1997) Turning back the harmful red tide. Nature 338:513–514CrossRef
    Beretta E, Bischi G, Solimano F (1990) Stability in chemostat equations with delayed nutrient recycling. J Math Biol 28:99–111MathSciNet CrossRef MATH
    Chattopadhyay J, Sarkar R (2002) A delay differential equation model on harmful algal blooms in the presence of toxic substances. IMA J Math Appl Med Biol 19:137–161CrossRef MATH
    Chattopadhyay J, Sarkar R, Mandal S (2002) Toxin producing plankton may act as a biological control for planktonic blooms-field study and mathematical modelling. J Theor Biol 215:333–344CrossRef
    Dasson P, Montresor M (2011) Unveiling the mysteries of phytoplankton life cycles: patterns and opportunities behind complexity. J Plankton Res 33:2–12
    Du Y, Hsu S (2010) On a nonlocal reaction–diffusion problem arising from the modeling of phytoplankton growth. SIAM J Math Anal 42:1305–1333MathSciNet CrossRef MATH
    Du Y, Mei L (2011) On a nonlocal reaction–diffusion–advection equation modelling phytoplankton dynamics. Nonlinearity 24:319–349MathSciNet CrossRef MATH
    Dubey B, Kumari N, Upadhyay RK (2009) Spatiotemporal pattern formation in a diffusive predator–prey system: an analytical approach. J Appl Math Comput 31:413–432MathSciNet CrossRef MATH
    Duinker J, Wefer G (1994) Das \(CO_{2}\) -problem und die Rolle des Ozeans. Naturwissenschaften 81:237–242CrossRef
    Faria T (2000) Normal forms and Hopf bifurcation for partial differential equations with delays. Trans Am Math Soc 352:2217–2238MathSciNet CrossRef MATH
    Fleming RH (1939) The control of diatom populations by grazing. J Cons Perm Int Explor Mer 14:210–227CrossRef
    Freedman HI, Ruan S (1994) On reaction–diffusion systems of zooplankton–phytoplankton–nutrient models. Differ Equ Dyn Syst 2:49–64MathSciNet MATH
    Hallegraeff G (1993) A review of harmful algae blooms and the apparent global increase. Phycologia 32:79–99CrossRef
    Hassard B, Kazarinoff N, Wan Y (1981) Theory and applications of Hopf bifurcation. Cambridge University Press, CambridgeMATH
    He X, Ruan S (1998) Global stability in chemostat-type plankton models with delayed nutrient recycling. J Math Biol 37:253–271MathSciNet CrossRef MATH
    Hsu S, Lou Y (2010) Single phytoplankton species growth with light and advection in a water column. SIAM J Appl Math 70:2942–2974MathSciNet CrossRef MATH
    Huisman J, Weissing F (1994) Light-limited growth and competition for light in well-mixed aquatic environments: an elementary model. Ecology 75:507–520CrossRef
    Huisman J, Weissing F (1995) Competition for nutrients and light in a mixed water column: a theoretical analysis. Am Nat 146:536–564CrossRef
    Larsson P (1978) The life cycle dynamics and production of zooplankton in Ovre Heimdalsvatn. Holarct Ecol 1:162–218
    Levin SA, Segel LA (1976) Hypothesis for origin of planktonic patchiness. Nature 259:659CrossRef
    Malchow H (2000) Motional instabilities in prey–predator systems. J Theor Biol 204:639–647CrossRef
    Malchow H, Radtke B, Kallache M, Medvinsky A, Tikhonov D, Petrovskii S (2000) Spatio-temporal pattern formation in coupled models of plankton dynamics and fish school motion. Nonlinear Anal Real World Appl 1:53–67MathSciNet CrossRef MATH
    Malchow H, Petrovskii S, Medvinsky A (2001) Pattern formation in models of plankton dynamics, a synthesis. Oceanol Acta 24:479–487CrossRef
    Malchow H, Petrovskii S, Medvinsky A (2002) Numerical study of plankton–fish dynamics in a spatially structured and noisy environment. Ecol Model 149:247–255CrossRef
    Malchow H, Hilker F, Petrovskii S (2004) Noise and productivity dependence of spatiotemporal pattern formation in a prey–predator system. Discret Contin Dyn Syst Ser B 4:705–711MathSciNet CrossRef MATH
    Mccauley E, Murdoch W (1987) Cyclic and stable populations: plankton as a paradigm. Am Nat 129(1):97–121CrossRef
    Meadows PS, Campbell JI (1988) An introduction to marine science. Blackie and Son Ltd, LondonCrossRef
    Medvinsky A, Petrovskii S, Tikhonova I, Malchow H, Li B (2002) Spatiotemporal complexity of plankton and fish dynamics. SIAM Rev 44:311–370MathSciNet CrossRef MATH
    Mimura M, Murray JD (1978) On a diffusive prey–predator model which exhibit patchiness. J Theor Biol 75:249–262MathSciNet CrossRef
    Pao CV (2002) Convergence of solutions of reaction–diffusion systems with time delays. Nonlinear Anal 48:349–362MathSciNet CrossRef MATH
    Pascual M (1993) Diffusion-induced chaos in a spatial predator–prey system. Proc Soc Lond Ser B 251:1–7CrossRef
    Ruan S (1993) Persistence and coexistence in zooplankton–phytoplankton–nutrient models with instantaneous nutrient recycling. J Math Biol 31:633–654MathSciNet CrossRef MATH
    Ruan S (1995a) Uniform persistence in reaction–diffusion plankton models. Rocky Mt J Math 25:459–470
    Ruan S (1995b) The effect of delays on stability and persistence in plankton models. Nonlinear Anal 24:575–585
    Ruan S (1998) Turing instability and travelling waves in diffusive plankton models with delayed nutrient recycling. IMA J Appl Math 61:15–32MathSciNet CrossRef MATH
    Ruan S (2001) Oscillations in plankton models with nutrient recycling. J Theor Biol 208:15–26CrossRef MATH
    Ruan S, Wei J (2003) On the zeros of transcendental functions with applications to stability of delay differential equations with two delays. Dyn Contin Discret Impuls Syst Ser A Math Anal 10:863–874MathSciNet MATH
    Ruan S, Wolkowicz G (1995) Uniform persistence in plankton models with delayed nutrient recycling. Can Appl Math Q 3:219–235MathSciNet MATH
    Scheffer M (1991) Fish and nutrients interplay determines algal biomass: a minimal model. Oikos 62:271–282CrossRef
    Sherratt J, Eagen B, Lewis M (1997) Oscillations and chaos behind predator–prey invasion: mathematical artifact or ecological reality? Philos Trans R Soc Lond Ser B 352:21–38CrossRef
    Tikhonova I, Li B, Malchow H, Medvinsky A (2003) The impact of the phytoplankton growth rate on spatial and temporal dynamics of plankton communities in a heterogeneous environment. Biofizika 48:891–899
    Williamson P, Gribbin J (1991) How plankton change the climate? New Sci 16:48–52
    Wu J (1996) Theory and applications of partial functional–differential equations. Springer, New YorkCrossRef MATH
    Yuan Y (2012) A coupled plankton system with instantaneous and delayed predation. J Biol Dyn 6:148–165MathSciNet CrossRef
    Zuo W, Wei J (2011) Stability and Hopf bifurcation in a diffusive predator–prey system with delay effect. Nonlinear Anal Real World Appl 12:1998–2011MathSciNet CrossRef MATH
  • 作者单位:Jiantao Zhao (1) (3)
    Jianjun Paul Tian (2)
    Junjie Wei (1)

    1. Department of Mathematics, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, People’s Republic of China
    3. School of Science, Qiqihar University, Qiqihar, 161006, Heilongjiang, People’s Republic of China
    2. Department of Mathematical Sciences, New Mexico State University, Las Cruces, NM, 88001, USA
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Mathematical Biology
  • 出版者:Springer New York
  • ISSN:1522-9602
文摘
This study revisits the minimal model for a plankton ecosystem proposed by Scheffer with spatial diffusion of plankton and the delay of the maturation period of herbivorous zooplankton. It deepens our understanding of effects of the nutrients and the predation of fish upon zooplankton on the dynamical patterns of the plankton system and also presents new phenomena induced by the delay with spatial diffusion. When the nutrient level is sufficient low, the zooplankton population collapses and the phytoplankton population reaches its carrying capacity. Mathematically, the global stability of the boundary equilibrium is proved. As the nutrient level increases, the system switches to coexistent equilibria or oscillations depending on the maturation period of zooplankton and the predation rate of fish on herbivorous zooplankton. Under an eutrophic condition, there is a unique coexistent homogeneous equilibrium, and the equilibrium density of phytoplankton increases, while the equilibrium density of herbivorous zooplankton decreases as the fish predation rate on herbivorous zooplankton is increasing. The study shows that the system will never collapses under the eutrophic condition unless the fish predation rate approaches infinite. The study also finds a functional bifurcation relation between the delay parameter of the maturation period of herbivorous zooplankton and the fish predation rate on herbivorous zooplankton that, above a critical value of the fish predation rate, the system stays at the coexistent equilibrium, and below that value, the system switches its dynamical patterns among stable and unstable equilibria and oscillations. The oscillations emerge from Hopf bifurcations, and a detailed mathematical analysis about the Hopf bifurcations is carried out to give relevant ecological predications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700