用户名: 密码: 验证码:
Shape Change Through Programmable Stiffness
详细信息    查看全文
  • 关键词:Multi ; functional materials ; Embedded computation ; Variable stiffness
  • 刊名:Springer Tracts in Advanced Robotics
  • 出版年:2016
  • 出版时间:2016
  • 年:2016
  • 卷:109
  • 期:1
  • 页码:893-907
  • 全文大小:753 KB
  • 参考文献:1.Vasista, S., Tong, L., Wong, K.: Realization of morphing wings: a multidisciplinary challenge. J. Aircr. 49(1), 11–28 (2012)CrossRef
    2.Weisshaar, T.A.: Morphing aircraft systems: historical perspectives and future challenges. J. Aircr. 50(2), 1–17 (2013)
    3.Ou, J., Yao, L., Tauber, D., Steimle, J., Niiyama, R., Ishii, H.: jamSheets: thin interfaces with tunable stiffness enabled by layer jamming.In: Proceedings of the 8th International Conference on Tangible, Embedded and Embodied Interaction, pp. 65–72. ACM (2014)
    4.McEvoy, M.A., Correll, N.: Thermoplastic variable stiffness composites with embedded, networked sensing, actuation, and control. J. Compos. Mater (2014)
    5.Yim, M., Zhang, Y., Duff, D.: Modular robots. IEEE Spectr. 39(2), 30–34 (2002)CrossRef
    6.Correll, N., Onal, C.D., Liang, H., Schoenfeld, E., Rus, D.: Soft autonomous materials—using active elasticity and embedded distributed computation. In: 12th International Symposium on Experimental Robotics, Springer Tracts in Advanced Robotics, Vol. 79, pp. 227–240 (2014)
    7.Marchese, A.D., Konrad, K., Onal, C.D., Rus, D.: Design, curvature control, and autonomous positioning of a soft and highly compliant 2D robotic manipulator. In: 2014 IEEE International Conference Robotics and Automation, IEEE (2014)
    8.Gandhi, F., Kang, S.G.: Beams with controllable flexural stiffness. Smart Mater. Struct. 16(4), 1179–1184 (2007)CrossRef
    9.Murray, G., Gandhi, F.: Multi-layered controllable stiffness beams for morphing: energy, actuation force, and material strain considerations. Smart Mater. Struct. 19(4), 11 (2010)
    10.Shan, W., Lu, T., Majidi, C.: Soft-matter composites with electrically tunable elastic rigidity. Smart Mater. Struct. 22(8), 085005 (2013)CrossRef
    11.Shanmuganathan, K., Capadona, J.R., Rowan, S.J., Weder, C.: Biomimetic mechanically adaptive nanocomposites. Prog. Polym. Sci. 35(1), 212–222 (2010)CrossRef
    12.Brown, E., Rodenberg, N., Amend, J., Mozeika, A., Steltz, E., Zakin, M.R., Lipson, H., Jaeger, H.M.: Universal robotic gripper based on the jamming of granular material. Proc. Nat. Acad. Sci. 107(44), 18809–18814 (2010)CrossRef
    13.Majidi, C., Wood, R.J.: Tunable elastic stiffness with microconfined magnetorheological domains at low magnetic field. Appl. Phys. Lett. 97(16), 164104–164104 (2010)CrossRef
    14.Chen, J., Liao, W.: Design, testing and control of a magnetorheological actuator for assistive knee braces. Smart Mater. Struct. 19(3), 035029 (2010)CrossRef
    15.Varga, Z., Filipcsei, G., Zrínyi, M.: Magnetic field sensitive functional elastomers with tuneable elastic modulus. Polymer 47(1), 227–233 (2006)CrossRef
    16.Pratt, G.A., Williamson, M.M.: Series elastic actuators. In: IEEE/RSJ International Conference on Intelligent Robots and Systems 95.’Human Robot Interaction and Cooperative Robots, Proceedings, vol.1, pp. 399–406. IEEE (1995)
    17.Averous, L., Moro, L., Dole, P., Fringant, C.: Properties of thermoplastic blends: starch-polycaprolactone. Polymer 41(11), 4157–4167 (2000)CrossRef
    18.Li, C., Rahn, C.D.: Design of continuous backbone, cable-driven robots. J. Mech. Des. 124(2), 265–271 (2002)CrossRef
    19.Webster, R.J., Jones, B.A.: Design and kinematic modeling of constant curvature continuum robots: a review. Int. J. Robot. Res. 29(13), 1661–1683 (2010)CrossRef
  • 作者单位:Michael McEvoy (6)
    Nikolaus Correll (6)

    6. Department of Computer Science, University of Colorado at Boulder, Boulder, 80309, USA
  • 丛书名:Experimental Robotics
  • ISBN:978-3-319-23778-7
  • 刊物类别:Engineering
  • 刊物主题:Automation and Robotics
    Control Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1610-742X
文摘
We present a composite material with embedded sensing and actuation that can perform permanent shape changes by temporarily varying its stiffness and applying an external moment. Varying stiffness is a complementary approach to actuator-chain based approaches that can be accomplished using a large variety of means ranging from heat, electric field or vacuum. A polycaprolactone (PCL) bar provides stiffness at room temperature. Heating elements and thermistors are distributed along the bar so that local regions can be tuned to a specific temperature/stiffness. Applying an external moment using two tendon actuators then lets the material snap into a desired shape. We describe the composite structure, the principles behind shape change using variable stiffness control, and forward and inverse kinematics of the system. We present experimental results using a 5-element bar that can assume different global conformations using two simple actuators.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700