用户名: 密码: 验证码:
The effect of fish stocking on mountain lake plankton communities identified using palaeobiological analyses of bottom sediment cores
详细信息    查看全文
  • 作者:Elwira Sienkiewicz ; Michał Gąsiorowski
  • 关键词:Fish stocking ; Diatom ; Cladocera ; Trophic changes ; Mountain lakes ; Fishless lakes
  • 刊名:Journal of Paleolimnology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:55
  • 期:2
  • 页码:129-150
  • 全文大小:2,429 KB
  • 参考文献:Battarbee RW (1986) Diatom analysis. In: Berglund BE (ed) Handbook of holocene palaeoecology and palaeohydrology. Willey, Newyork, pp 527–570
    Bennion H, Appleby PG (1999) An assessment of recent environmental change in Llangorse Lake using palaeolimnology. Aquat Conserv 9:361–375CrossRef
    Bergström A-K, Blomqvist P, Jansson M (2005) Effects of atmospheric nitrogen deposition on nutrient limitation and phytoplankton biomass in unproductive Swedish lakes. Limnol Oceanogr 50:987–994CrossRef
    Birks HJB, Line JM, Juggins J, Stevenson AC, ter Braak CJF (1990) Diatoms and pH reconstruction. Philos T R Soc B 327:263–278CrossRef
    Carpenter SR, Kitchell JF (1993) The trophic cascade in lakes. Cambridge University Press, Cambridge, p 399CrossRef
    Carpenter SR, Christensen DL, Cole JJ, Cottingham KL, He X, Hodgson JR, Kitchell JF, Knight SE, Pace ML (1995) Biological control of eutrophication in lakes. Environ Sci Technol 29:784–786CrossRef
    Clarke KR (1993) Non-parametric multivariate analysis of changes in community structure. Aust J Ecol 18:117–143CrossRef
    Clarke G, Kernan M, Marchetto A, Sorvari S, Catalan J (2005) Using diatoms to assess geographical patterns of change in high-altitude European lakes from pre-industrial times to the present day. Aquat Sci 67:224–236CrossRef
    Cremer HB, Wagner M, Melles M, Hubberten H-W (2001) The postglacial environmental development of Raffles Sø, East Greenland: inferences from a 10,000 year diatom record. J Paleolimnol 26:67–87CrossRef
    Drake DC, Naiman RJ (2000) An evaluation of restoration efforts in fishless lakes stocked with exotic trout. Conserv Biol 14:1807–1820CrossRef
    Gąsiorowski M, Sienkiewicz E (2010) 20th century acidification and warming as recorded in two alpine lakes in the Tatra Mountains (South Poland, Europe). Sci Total Environ 408:1091–1101CrossRef
    Gąsiorowski M, Sienkiewicz E (2013) The sources of carbon and nitrogen in mountain lakes and the role in human activity in their modification determined by tracking stable isotope composition. Water Air Soil Poll 224:1498CrossRef
    Gliwicz MZ, Rowan MG (1984) Survival of Cyclops abyssorum tatricus (Copepoda, Crustacea) in alpine lakes stocked with planktivorous fish. Limnol Oceanogr 29:1290–1299CrossRef
    Gliwicz ZM, Ślusarczyk A, Ślusarczyk M (2001) Life history synchronization in a long-lifespan single-cohort Daphnia population in a fishless alpine lake. Oecologia 128:368–378CrossRef
    Gordon AD, Birks HJB (1972) Numerical methods in palaeoecology. I Zonation of pollen diagrams. New Phytologist 71:961–979CrossRef
    Goslar T, Pazdur MF (1989) Improved precision 14C measurements and natural 14C variations around 10, 000 cal BP. Radiocarbon 31:833–838
    Ha JY, Hanazato T (2009) Role of interference from Daphnia and predation by cyclopoid copepods in zooplankton community structure: experimental analysis using mesocosms. Plankton Benthos Res 4:147–153CrossRef
    Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics package for education and data analysis. Palaeontol Electron 4:1–9
    Heaton THE (1990) 15N/14N ratios of NOx from vehicle engines and coal-fired power station. Tellus 24B:304–307
    Hercman H, Pawlak J (2012) MOD-AGE: an age-depth model construction algorithm. Quat Geochronol 12:1–10CrossRef
    Hercman H, Gąsiorowski M, Pawlak J (2014) Testing the MOD-AGE chronologies of lake sediment sequences dated by the Pb-210 method. Quat Geochronol 22:155–162CrossRef
    Hořická Z, Stuchlík E, Hudec I, Černý M, Fott J (2006) Acidification and the structure of crustacean zooplankton in mountain lakes: the Tatra mountains (Slovakia, Poland). Biologia 61(Suppl. 18):S121–S134
    Jeppesen E, Jensen JP, Lauridsen TL, Amsinck SL, Christoffersen K, Søndergaard M, Mitchell SF (2003) Sub-fossdils of cladocerans in the surface sediment of 135 lakes as proxies for community structure of zooplankton, fish abundance and lake temperature. Hydrobiologia 491:321–330CrossRef
    Juggins S (1992) TRAN (Version 1.8) and ZONE (Version 1.2) User Manual
    Juggins S (2001) The European diatom database, user guide, Version 1.0
    Karst-Riddoch TL, Pisaric MFJ, Smol JP (2005) Diatom responses to 20th century climate-related environmental changes in high-elevation mountain lakes of the northern Canadian Cordillera. J Paleolimnol 33:265–282CrossRef
    Katsaounos CZ, Giokas LD, Leonardos ID, Karayannis MI (2007) Speciation of phosphorus fractionation in river sediments by explanatory data analysis. Water Res 41:406–418CrossRef
    Kopáček J, Stuchlík E, Straškrabová V, Pšenáková P (2000) Factors governing nutrient status of mountain lakes in the Tatra Mountains. Freshw Biol 43:369–383CrossRef
    Kopáček J, Stuchlík E, Hardekopf D (2006) Chemical composition of the Tatra Mountains lakes: recovery from acidification. Biologia 61(Suppl. 18):S21–S33
    Kownacki A (2004) Branchinecta palludosa (O.F. Müller, 1788). In: Głowaciński Z, Nowacki J (eds) Polish Red Data Book of Animals—Invertebrates. IOP PAN - Kraków, AR–Poznań. pp 35–36
    Krammer K, Lange-Bertalot H (1986) Süßwasserflora von Mitteleuropa. Bacillariophyceae. I. Teil: Naviculaceae.Gustav Fisher Verlag, Stuttgart, Germany: 1-876
    Krammer K, Lange-Bertalot H (1988) Süßwasserflora von Mitteleuropa Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae.Gustav Fisher Verlag, Stuttgart, Germany: 1-596Krammer K, Lange-Bertalot H (1991a) Süßwasserflora von Mitteleuropa. Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae.Gustav Fisher Verlag, Stuttgart, Germany, pp 1–576
    Krammer K, Lange-Bertalot H (1991b) Süßwasserflora von Mitteleuropa. Bacillariophyceae. 4. Teil: Achnanthaceae, Kritische Ergäzungen zu Navicula (Lineolatae) und Gomphonema Gesamtliteraturverzeichnis Teil 1-4. Gustav Fisher Verlag, Stuttgart, Germany. pp 1–437
    Lange-Bertalot Metzeltin D (1996) Ecology—diversity—taxonomy. Indicators of oligotrophy—800 taxa representative of three ecologically distinct lake types. In: Lange-Bertalot H (ed) IconographiaDiatomologica 2. Koeltz Scientific Books, Koenigstein, pp 1–390
    Lin L, Wu J, Wang S (2006) Evidence from isotopic geochemistry as an indicator of eutrophication of Meiliang Bay in Lake Taihu, China. Sci China Ser D Earth Sci 46(Suppl 1):62–71CrossRef
    Makos M, Nitychoruk J, Zreda M (2012) The Younger Dryas climatic conditions in the Za Mnichem Valley (Polish High Tatra Mountains) based on exposure-age dating and glacier-climate modelling. Boreas 42:745–761CrossRef
    Meyers PA (1997) Organic geochemical proxies of paleogeographic, paleolimnologic, and paleoclimatic processes. Org Geochem 27:213–250CrossRef
    Meyers PA, Laillier-Vergès E (1999) Lacustrine sedimentary organic matter records of late quaternary paleoclimates. J Paleolimnol 21:345–372CrossRef
    Meyers PA, Teranes JL (2004) Sediment organic matter. In: Last WM, Smol JP (eds), Tracking environmental change using lake sediments. 2: 239–269
    Nevalainen L, Ketola M, Korosi JB, Manca M, Kurmayer R, Koinig KA, Psenner R, Luoto TP (2014) Zooplankton (Cladocera) species turnover and long-term decline of Daphnia in two high mountain lakes in the Austrian Alps. Hydrobiologia 722:75–91CrossRef
    Panzenböck M, Möbes-Hansen B, Albert R, Herndl GJ (2000) Dynamics of phyto- and bacterioplankton in a high Arctic lake on Franz Joseph Land archipelago. Aquat Microb Ecol 21:265–273CrossRef
    Pappas JL (2010) Phytoplankton assemblages, environmental influences and trophic status using canonical correspondence analysis, fuzzy relations, and linguistic translation. Ecol Inform 5:79–88CrossRef
    Pla S, Monteith D, Flower R, Rose N (2009) The recent palaeolimnology of a remote Scottish loch with special reference to the relative impacts of regional warming and atmospheric contamination. Freshw Biol 54:505–523CrossRef
    Ramsey CB (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51:337–360
    Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidison H, Hajdas I, Hatté C, Heaton T, Hoffmann DL, Hogg A, Hughen KA, Kaiser K, Kromer B, Manning SW, Niu M, Reimer R, Richards DA, Scott EM, Southon JR, Staff RA, Turney C & Plicht J (2013) ‘IntCal13 AND Marine13 radiocarbon age calibration curves 0–50,000 years cal BP’. Radiocarbon. pp 1869–1887
    Roozen FCJM, Lürling M, Vlek H, Van Der Pouw Kraan EAJ, Ibelings BW, Scheffer M (2007) Resuspension of algal cells by benthivorous fish boots phytoplankton biomass and alters community structure in shallow lakes. Freshw Biol 52:977–987CrossRef
    Rühland KM, Paterson AM, Keller W, Michelutti N, Smol JP (2013) Global warming triggers the loss of a key Arctic refugium. Proc R Soc B 280:20131887CrossRef
    Sarmaja-Korjonen K (2003) Chydorid ephippia as indicators of environmental change biostratigraphical evidence from two lakes in southern Finland. Holocene 13:691–700CrossRef
    Schabetsberger R, Luger MS, Drozdowski G, Jagsch A (2009) Only the small survive: monitoring long-term changes in the zooplankton community of an Alpine lake after fish introduction. Biol Invasions 11:1335–1345CrossRef
    Schindler DE, Knapp RP, Leavitt PR (2001) Alteration of nutrient cycles and algal production resulting from fish introductions into mountain lakes. Ecosystems 4:308–321CrossRef
    Sienkiewicz E, Gąsiorowski M (2014) Changes in the trophic status of three mountain lakes in southern Poland—natural or anthropogenic process? Pol J Environ Stud 23:875–892
    Ślusarczyk M (1997) Impact of fish predation on a small-bodied cladoceran: limitation or stimulation? Hydrobiologia 34:215–221CrossRef
    Smol JP, Wolfe AP, Birks HJB, Douglas MSV, Jones VJ, Korhola A, Pienitz R, Rühland K, Sorvari S, Antoniades D, Brooks SJ, Fallu M-A, Hughes M, Keatley BE, Laing TE, Michelutti N, Nazarova L, Nyman M, Paterson AM, Perren B, Quinlan R, Rautio M, Saulnier-Talbot E, Siitonen S, Solovieva N, Weckström J (2005) Climate-driven regime shifts in the biological communities of arctic lakes. Proc Nat Acad Sci USA 102(12):4397–4402CrossRef
    Sønderaard M, Jensen JP, Jeppensen E (2003) Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506–509:135–145CrossRef
    St Jacques J-M, Douglas MVS, Price N, Drakulic N, Gubala CP (2005) The effect of fish introductions on the diatom and cladoceran communities of Lake Opeongo, Ontario, Canada. Hydrobiologia 549:99–113CrossRef
    Strock KE, Saros JE, Simon KS, McGowan S, Kinnison MT (2013) Cascading effects of generalist fish introduction in oligotrophic lakes. Hydrobiologia 711:99–113CrossRef
    Stuchík E, Kopáček J, Fott J, Hoŕická Z (2006) Chemical composition of the Tatra Mountains lakes: response to acidification. Biologia 61(Supp. 18):S11–S20
    Szeroczyńska K, Sarmaja-Korjonen K (2007) Atlas of subfossil Cladocera from central and northern Europe. Friends of the Lower Vistula Society, Poland
    Temporetti PF, Pedrozo FL (2000) Phosphorus release rates from freshwater sediments affected by fish farming. Aquac Res 31:447–455CrossRef
    ter Braak CJF, Šmilauer P (2012) Canoco reference manual and user’s guide: software of ordination (version 5.0). Microcomputer Power (Ithaca, NY, USA), p 496
    Tiberti R, von Hardenberg A, Bogliani G (2014) Ecological impact of introduced fish in high altitude lakes: a case of study from the European Alps. Hydrobiologia 724:1–19CrossRef
    Tolotti M (2001) Phytoplankton and littoral epilithic diatoms in high mountain lakes in the Adamello-Brenta Regional Park (Trentino, Italy) and their relation to trophic status and acidification risk. J Limnol 60:171–188CrossRef
    Toro M, Granados I (2002) Restoration of a small high mountain lake after recent tourist impact: the importance of limnological monitoring and paleolimnology. Water Air Soil Poll Focus 2:295CrossRef
    Vreca P, Muri G (2006) Changes in accumulation of organic matter and stable carbon and nitrogen isotopes in sediments of two Slovenian mountain lakes (Lake Ledvica and Lake Planina) induced by eutrophication changes. Limnol Oceanogr 51:781–790CrossRef
    Witkowski A (1996). Fish. In: Mire Z (ed) Nature of the Tatra National Park. Tatrzański Park Narodowy, in Polish, pp 485–492
    Wolfe AP, Van Gorp AC, Baron JS (2003) Recent ecological and biogeochemical changes in alpine lakes of Rocky Mountain National Park (Colorado, USA): a response to anthropogenic nitrogen deposition. Geobiology 1:153–168CrossRef
  • 作者单位:Elwira Sienkiewicz (1)
    Michał Gąsiorowski (1)

    1. Institute of Geological Sciences, Polish Academy of Sciences, Research Centre at Warsaw, St. Twarda 51/55, 00818, Warsaw, Poland
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Sedimentology
    Climate Change
    Physical Geography
    Hydrobiology
    Geology
  • 出版者:Springer Netherlands
  • ISSN:1573-0417
文摘
The artificial introduction of fish into a naturally fishless lake can effectively modify the food web and trophic status of that lake. We observed changes in the zooplankton community after stocking fish in Przedni Staw Polski, an oligotrophic mountain lake in the Tatra Mountains (Poland). Results were compared with observations about a stocked lake that naturally contained fish (Morskie Oko), and with two fishless lakes that served as reference sites. The main change observed in the cladoceran community of Przedni Staw Polski was the elimination of large-bodied Daphnia ~10 years after stocking fish. The introduction of fish also affected the phytoplankton community and resulted in an increase in diatom species related to higher trophic state, most likely due to the fish-induced alteration of the phosphorus cycle. Moreover, all of the studied lakes have been influenced by global and regional climatic and environmental changes, including intensive tourism and acid deposition. Changes in diatom communities were observed after fish stocking even in the lake with a natural fish population, while the zooplankton did not reflect higher fish density. These findings suggest that the natural balance between fish and phytoplankton was destroyed by fish stocking, and although it caused eutrophication in the lake, the higher fish density did not strongly modify the species composition of Cladocera. Keywords Fish stocking Diatom Cladocera Trophic changes Mountain lakes Fishless lakes

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700