用户名: 密码: 验证码:
Structural optimization using global stress-deviation objective function via the level-set method
详细信息    查看全文
文摘
The paper deals with minimum stress design using a novel stress-related objective function based on the global stress-deviation measure. The shape derivative, representing the shape sensitivity analysis of the structure domain, is determined for the generalized form of the global stress-related objective function. The optimization procedure is based on the domain boundary evolution via the level-set method. The elasticity equations are, instead of using the usual ersatz material approach, solved by the extended finite element method. The Hamilton-Jacobi equation is solved using the streamline diffusion finite element method. The use of finite element based methods allows a unified numerical approach with only one numerical framework for the mechanical problem as also for the boundary evolution stage. The numerical examples for the L-beam benchmark and the notched beam are given. The results of the structural optimization problem, in terms of maximum von Mises stress corresponding to the obtained optimal shapes, are compared for the commonly used global stress measure and the novel global stress-deviation measure, used as the stress-related objective functions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700