用户名: 密码: 验证码:
A Characterization of the Subdifferential of Singular Gaussian Distribution Functions
详细信息    查看全文
  • 作者:W. van Ackooij ; M. Minoux
  • 关键词:Chance constrained programming ; Probabilistic constraints ; Stochastic programming ; Gradients ; MSC 90C15 ; MSC 90B15
  • 刊名:Set-Valued and Variational Analysis
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:23
  • 期:3
  • 页码:465-483
  • 全文大小:483 KB
  • 参考文献:1.Clarke, F.H.: Optimisation and Nonsmooth Analysis. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (1987)
    2.de Oliveira, W., Sagastizábal, C., Lemaréchal, C.: Convex proximal bundle methods in depth: a unified analysis for inexact oracles. Math. Program. Ser. B 148, 241-77 (2014)View Article
    3.Dentcheva, D.: Optimisation models with probabilistic constraints, chapter 4 in [25], MPS-SIAM series on optimization. SIAM and MPS, Philadelphia (2009)
    4.Dentcheva, D., Martinez, G.: Regularization methods for optimization problems with probabilistic constraints. Math. Program. (series A) 138(1-2), 223-51 (2013)MathSciNet View Article
    5.Floudas, C.A.: In: Pardalos, P.M. (ed.): Encyclopedia of Optimization, 2nd edition. Springer (2009)
    6.Genz, A.: Numerical computation of multivariate normal probabilities. J. Comp. Graph Stat. 1, 141-49 (1992)
    7.Genz, A., Bretz, F.: Computation of multivariate normal and t probabilities. Number 195 in Lecture Notes in Statistics. Springer, Dordrecht (2009)View Article
    8.Henrion, R., M?ller, A.: Optimization of a continuous distillation process under random inflow rate. Comput. Math. Appl. 45, 247-62 (2003)MathSciNet View Article
    9.Henrion, R., M?ller, A.: A gradient formula for linear chance constraints under Gaussian distribution. Math. Oper. Res. 37, 475-88 (2012)MathSciNet View Article
    10.Henrion, R., R?misch, W.: Lipschitz and differentiability properties of quasi-concave and singular normal distribution functions. Ann. Oper. Res. 177, 115-25 (2010)MathSciNet View Article
    11.Hiriart-Urruty, J.B., Lemaréchal, C.: Convex analysis and Minimization Algorithms I. Number 305 in Grundlehren der mathematischen Wissenschaften. 2nd edition. Springer (1996)
    12.Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms II. Number 306 in Grundlehren der mathematischen Wissenschaften. 2nd edition. Springer (1996)
    13.Luedtke, J., Ahmed, S.: A sample approximation approach for optimization with probabilistic constraints. SIAM J. Optim. 19, 674-99 (2008)MathSciNet View Article
    14.Marti, K.: Differentiation of probability functions : The transformation method. Comput. Math. Appl. 30, 361-82 (1995)MathSciNet View Article
    15.Marti, K.: Differentiation of probability functions : The transformation method. Math. Program. 75(2), 201-20 (1996)MathSciNet View Article
    16.Mayer, J.: On the Numerical solution of jointly chance constrained problems, 1st edition. Chapter 12 in [30]. Springer (2000)
    17.Morgan, D.R., Eheart, J.W., Valocchi, A.J.: Aquifer remediation design under uncertainty using a new chance constraint programming technique. Water Resour. Res. 29, 551-61 (1993)View Article
    18.Pr?kopa, A.: On probabilistic constrained programming. In: H.W. Kuhn (ed.) Proceedings of the Princeton Symposium on Math. Prog., Vol. 28, pp 113-38 (1970)
    19.Pr?kopa, A.: Stochastic Programming. Kluwer, Dordrecht (1995)View Article
    20.Prékopa, A.: Probabilistic programming, in [24] (chapter 5). Elsevier, Amsterdam (2003)
    21.Prékopa, A., Szántai, T.: Flood control reservoir system design using stochastic programming. Math. Program. 9, 138-51 (1978)View Article
    22.Prékopa, A., Szántai, T.: A new multivariate gamma distribution and its fitting to empirical streamflow data. Water Resour. Res. 14, 19-4 (1978)View Article
    23.Prékopa, A., Szántai, T.: On optimal regulation of a storage level with application to the water level regulation of a lake. Eur. J. Oper. Res. 3, 175-89 (1979)View Article
    24.Ruszczyński, A., Shapiro, A.: Stochastic Programming, volume 10 of Handbooks in Operations Research and Management Science. Elsevier, Amsterdam (2003)
    25.Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming, Modeling and Theory, volume 9 of MPS-SIAM series on optimization. SIAM and MPS, Philadelphia (2009)View Article
    26.Szántai, T.: Numerical evaluation of probabilities concerning multi-dimensional probability distributions. Hungarian Academy of Sciences, PhD thesis (1985)
    27.Uryas’ev, S.: Derivatives of probability functions and integrals over sets given by inequalities. J. Comput. Appl. Math. 56(1-2), 197-23 (1994)MathSciNet View Article
    28.Uryas’ev, S.: Derivatives of probability functions and some applications. Ann. Oper. Res. 56, 287-11 (1995)MathSciNet View Article
    29.Uryas’ev, S.: Derivatives of probability and Integral functions: General Theory and Examples Appearing in [5]. 2nd edition. Springer (2009)
    30.Uryas’ev, S. (ed.): Probabilistic Constrained Optimization: Methodology and Applications. Kluwer Academic Publishers (2000)
    31.van Ackooij, W., de Oliveira, W.: Level bundle methods for constrained convex optimization with various oracles. Comput. Optim. Appl. 57(3), 555-97 (2014)MathSciNet View Article
    32.van Ackooij, W., Henrion, R.: Gradient formulae for nonlinear probabilistic constraints with gaussian and gauss
  • 作者单位:W. van Ackooij (1)
    M. Minoux (2)

    1. OSIRIS, EDF R&D, 1 avenue du Général de Gaulle, F-92141, Clamart Cedex, Paris, France
    2. LIP6, Université Pierre et Marie Curie, F-75000, Paris, France
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Analysis
    Geometry
  • 出版者:Springer Netherlands
  • ISSN:1877-0541
文摘
For optimization problems involving probabilistic constraints it is important to be able to compute gradients of these constraints efficiently. For distribution functions of Gaussian random variables with positive definite covariance matrices, computing gradients can be done efficiently. Indeed, a formula, linking components of the partial derivative and other regular Gaussian distribution functions exists and has been frequently employed by Prékopa. Recently, Henrion and M?ller provided not only sufficient conditions under which singular Gaussian distribution functions are differentiable, but also a formula akin to the regular case. The sufficient conditions, rule out a set of points having zero (Lebesgue) measure. We show here that in these points, the sub-differential (in the sense of Clarke) of a Gaussian distribution function can be fully characterized. We moreover provide sufficient and necessary conditions under which these distribution functions are differentiable.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700