用户名: 密码: 验证码:
An Assessment of Dynamic Subgrid-Scale Sea-Surface Roughness Models
详细信息    查看全文
  • 作者:Di Yang ; Lian Shen ; Charles Meneveau
  • 关键词:Sea ; surface roughness ; Turbulence modeling ; Wind–wave interaction ; Critical ; layer theory
  • 刊名:Flow, Turbulence and Combustion
  • 出版年:2013
  • 出版时间:October 2013
  • 年:2013
  • 卷:91
  • 期:3
  • 页码:541-563
  • 全文大小:1028KB
  • 参考文献:1. Albertson, J.D., Parlange, M.B.: Surface length-scales and shear stress: implications for land-atmosphere interaction over complex terrain. Water Resour. Res. 35, 2121-132 (1999) CrossRef
    2. Anderson, W., Meneveau, C.: Dynamic roughness model for large-eddy simulation of turbulent flow over multiscales, fractal-like rough surfaces. J. Fluid Mech. 679, 288-14 (2011) CrossRef
    3. Anderson, W., Passalacqua, P., Porté-Agel, F., Meneveau, C.: Large-eddy simulation of atmospheric boundary-layer flow over fluvial-like landscapes using a dynamic roughness model. Boundary-Layer Meteorol. 144, 263-86 (2012) CrossRef
    4. Belcher, S.E., Hunt, J.C.R.: Turbulent flow over hills and waves. Annu. Rev. Fluid Mech. 30, 507-38 (1998) CrossRef
    5. Bou-Zeid, E., Meneveau, C., Parlange, M.: A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys. Fluids 17, 025105 (2005) CrossRef
    6. Bou-Zeid, E., Parlange, M.B., Meneveau, C.: On the parameterization of surface roughness at regional scales. J. Atmos. Sci. 64, 216-27 (2006) CrossRef
    7. Byrne, H.M.: The variation of the drag coefficient in the marine surface layer due to temporal and spatial variations in the wind sea state. PhD thesis, University of Washington (1982)
    8. Caudal, G.: Self-consistency between wind stress, wave spectrum, and wind-induced wave growth for fully rough air–sea interface. J. Geophys. Res. 98, 22743-2752 (1993) CrossRef
    9. Cavaleri, L., Alves, J.-H.G.M., Ardhuin, F., Babanin, A., Banner, M., Belibassakis, K., Benoit, M., Donelan, M., Groeneweg, J., Herbers, T.H.C., Hwang, P., Jassen, P.A.E.M., Jassen, T., Lavrenov, I.V., Magne, R., Monbaliu, J., Onorato, M., Polnikov, V., Resio, D., Rogers, W.E., Sheremet, A., Smith, J.M., Tolman, H.L., van Vledder, G., Wolf, J., Young, I.: Wave modelling—the state of the art. Prog. Oceanogr. 75, 603-74 (2007) CrossRef
    10. Charnock, H.: Wind stress on a water surface. Q.?J.?R. Meteorol. Soc. 81, 639-40 (1955) CrossRef
    11. Chester, S., Meneveau, C.: Renormalized numerical simulation of flow over planar and non-planar fractal trees. Environ. Fluid Mech. 7, 195-15 (2007) CrossRef
    12. Chester, S., Meneveau, C., Parlange, M.B.: Modeling of turbulent flow over fractal trees with renormalized numerical simulation. J. Comput. Phys. 225, 427-48 (2007) CrossRef
    13. Dommermuth, D.G., Yue, D.K.P.: A high-order spectral method for the study of nonlinear gravity waves. J. Fluid Mech. 184, 267-88 (1987) CrossRef
    14. Donelan, M.A.: On the fraction of wind momentum retained by waves. In: Nihoul, J.C.J. (ed.) Marine Forecasting. Elsevier, Amsterdam (1979)
    15. Donelan, M.A.: Air–sea interaction. In: LeMehaute, B., Hanes, D.M. (eds.) The Sea, vol. 9, pp.?239-92. Wiley, New York (1990)
    16. Donelan, M.A., Babanin, A.V., Young, I.R., Banner, M.L.: Wave-follower field measurements of the wind-input spectral function. Part II. Parameterization of the wind input. J. Phys. Oceanogr. 36, 1672-689 (2006) CrossRef
    17. Geernaert, G.L.: Variation of the drag coefficient and its dependence on sea state. PhD thesis, University of Washington (1983)
    18. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A3, 1760-765 (1991)
    19. Hamada, T.: An experimental study of development of wind waves. Technical Report 2, Port and Harbor Tech. Res. Inst. pp. 1-1. Kurihama, Japan (1963)
    20. Hasselmann, K., Barnett, T.P., Bouws, E., Carlson, H., Cartwright, D.E., Enke, K., Ewing, J.A., Gienapp, H., Hasselmann, D.E., Kruseman, P., Meerburg, A., Müller, P., Olbers, D.J., Richter, K., Sell, W., Walden, H.: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Dtsch. Hydrogr. Z. Suppl. 8(12), 1-5 (1973)
    21. Hsu, S.A.: A dynamic roughness equation and its application to wind stress determination at the air–sea interface. J. Phys. Oceanogr. 4, 116-20 (1974) CrossRef
    22. Hsu, C., Wu, H., Hsu, E., Smith, R.L.: Momentum and energy transfer in wind generated waves. J. Phys. Oceanogr. 12, 929-51 (1982) CrossRef
    23. Hwang, P.A.: Influence of wavelength on the parameterization of drag coefficient and surface roughness. J. Oceanogr. 60, 835-41 (2004)
    24. Hwang, P.A.: Drag coefficient, dynamic roughness and reference wind speed. J. Oceanogr. 61, 399-13 (2005) CrossRef
    25. Janssen, P.A.E.M.: Quasi-linear theory of wind-wave generation applied to wave forecasting. J. Phys. Oceanogr. 21, 1631-642 (1991) CrossRef
    26. Janssen, P.: The Interaction of Ocean Waves and Wind. Cambridge University Press, Cambridge (2004)
    27. Kawai, S., Okada, K., Toba, Y.: Support of the 3/2-power law and the $gu_\ast\sigma^{-4}$ -spectral form for growing wind waves with field observational data. J. Oceanogr. Soc. Japan 33, 137-50 (1977) CrossRef
    28. Kitaigorodskii, S.A.: On the calculation of the aerodynamic roughness of the sea surface. Izv. Atmos. Ocean. Phys. 4, 870-78 (1968)
    29. Kitaigorodskii, S.A., Volkov, Y.A.: On the roughness parameter of the sea surface and the calculation of momentum flux in the near water layer of the atmosphere. Bull. Acad. Sci. USSR, Atmos. Ocean. Phys. 1, 973-88 (1965)
    30. Kunishi, H.: An experimental study on the generation and growth of wind waves. In: Disaster Prevention Res. Inst., Kyoto University, Bull., vol.?61, pp.?1-1. Kyoto, Japan (1963)
    31. Kunishi, H., Imasato, N.: On the growth of wind waves in high-speed wind flume. In: Annuals, Disaster Prevention Res. Inst., Kyoto University, vol. 9, pp. 667-76. Kyoto, Japan (1966)
    32. Lamb, H.: Hydrodynamics, 5th edn. Dover, Mineola (1932)
    33. Makin, V.K., Kudryavtsev, V.N., Mastenbroek, C.: Drag of the sea surface. Boundary-Layer Meteorol. 73, 159-82 (1995) CrossRef
    34. Masuda, A., Kusaba, T.: On the local equilibrium of winds and wind-waves in relation to surface drag. J. Oceanogr. Soc. Japan 43, 28-6 (1987) CrossRef
    35. Mei, C.C., Stiassnie, M., Yue, D.K.P.: Theory and Applications of Ocean Surface Waves. Part 2: Nonlinear Aspects. World Scientific, Singapore (2005)
    36. Meneveau, C.: Germano identity-based subgrid-scale modeling: a brief survey of variations on a fertile theme. Phys. Fluids 24, 121301 (2012) CrossRef
    37. Merzi, N., Graf, W.H.: Evaluation of the drag coefficient considering the effects of mobility of the roughness elements. Ann. Geophys. 3, 473-78 (1985)
    38. Miles, J.W.: On the generation of surface waves by shear flows. J. Fluid Mech. 3, 185-04 (1957) CrossRef
    39. Miles, J.W.: Surface-wave generation revisited. J. Fluid Mech. 256, 427-41 (1993) CrossRef
    40. Moeng, H.: A large-eddy simulation for the study of planetary boundary layer turbulence. J. Atmos. Sci. 41, 2052-062 (1984) CrossRef
    41. Monin, A.S., Obukhov, A.M.: Basic laws of turbulent mixing in the ground layer of the atmosphere. Tr. Geofiz. Inst., Akad. Nauk SSSR 151, 163-87 (1954)
    42. Rodriguez-Iturbe, I., Marani, M., Rigon, R., Rinaldo, A.: Self-organized river basin landscapes: Fractal and multifractal characteristics. Water Resour. Res. 30, 3531-539 (1994) CrossRef
    43. Smith, S.D., Anderson, R.J., Oost, W.A., Kraan, C., Maat, N., DeCosmo, J., Katsaros, K.B., Davidson, K.L., Bumke, K., Hasse, L., Chadwick, H.M.: Sea surface wind stress and drag coefficients: The HEXOS results. Boundary-Layer Meteorol. 60, 109-42 (1992) CrossRef
    44. Sullivan, P.P., McWilliams, J.C.: Dynamics of winds and currents coupled to surface waves. Ann. Rev. Fluid Mech. 42, 19-2 (2010) CrossRef
    45. Sullivan, P.P., Edson, J.B., Hristov, T., McWilliams, J.C.: Large-eddy simulations and observations of atmospheric marine boundary layers above nonequilibrium surface waves. J. Atmos. Sci. 65, 1225-245 (2008) CrossRef
    46. Sullivan, P.P., McWilliams, J.C., Hristov, T.: A large eddy simulation model of high wind marine boundary layers above a spectrum of resolved moving waves. In: 19th Conference on Boundary Layer and Turbulence, Keystone, CO (2010)
    47. Taylor, P.K., Yelland, M.J.: The dependence of sea surface roughness on the height and steepness of the waves. J. Phys. Oceanogr. 31, 572-90 (2001) CrossRef
    48. Toba, Y.: Drop production by bursting of air bubbles on the sea surface (III). Study by use of a wind flume. In: Mem. Coll. Sci., Univ. of Kyoto, Ser.?A, vol. 29, pp. 313-44 (1961)
    49. Toba, Y.: Local balance in the air–sea boundary processes. I. On the growth process of wind waves. J. Oceanogr. Soc. Japan 28, 109-20 (1972) CrossRef
    50. Toba, Y., Iida, N., Kawamura, H., Ebuchi, N., Jones, I.S.F.: Wave dependence of sea-surface wind stress. J. Phys. Oceanogr. 20 705-21 (1990) CrossRef
    51. Toba, Y., Smith, S.D., Ebuchi, N.: Historical drag expressions. In: Jones, I.S.F., Toba., Y. (eds.) Wind Stress Over the Ocean, pp. 35-3. Cambridge University Press, Cambridge (2001) CrossRef
    52. Volkov, Y.: The dependence on wave age. In: Jones, I.S.F., Toba, Y. (eds.) Wind Stress Over the Ocean, pp. 206-17. Cambridge University Press, Cambridge (2001) CrossRef
    53. Yang, D., Shen, L.: Characteristics of coherent vortical structures in turbulent flows over progressive surface waves. Phys. Fluids 21, 125106 (2009) CrossRef
    54. Yang, D., Shen, L.: Direct-simulation-based study of turbulent flow over various waving boundaries. J. Fluid Mech. 650, 131-80 (2010) CrossRef
    55. Yang, D., Shen, L.: Simulation of viscous flows with undulatory boundaries. Part I: basic solver. J. Comput. Phys. 230, 5488-509 (2011) CrossRef
    56. Yang, D., Shen, L.: Simulation of viscous flows with undulatory boundaries. Part II: coupling with other solvers for two-fluid computations. J. Comput. Phys. 230, 5510-531 (2011) CrossRef
    57. Yang, D., Meneveau, C., Shen, L.: Dynamic modeling of sea-surface roughness for large-eddy simulation of wind over ocean wavefield. J. Fluid Mech. (2013, in press)
  • 作者单位:Di Yang (1)
    Lian Shen (2) (3)
    Charles Meneveau (1) (4)

    1. Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
    2. Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
    3. St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, 55414, USA
    4. Center for Environmental and Applied Fluid Mechanics, Johns Hopkins University, Baltimore, MD, 21218, USA
  • ISSN:1573-1987
文摘
Covered by waves with various lengths, the mobile sea surface represents a great challenge to the large-eddy simulation (LES) of atmospheric boundary layer flow over the ocean surface. In this study, we report recent developments and tests of dynamic modeling approaches for the subgrid-scale (SGS) sea-surface roughness for LES. In the model, introduced originally in Yang et al. (J. Fluid Mech., in press, 2013), the SGS roughness is quantified by an integral of the SGS wave spectrum, $\sigma_{\eta}^{\Delta}$ , weighted based on the wind-wave kinematics, with an unknown model coefficient α w as pre-factor. The coefficient α w is determined dynamically based on the basic constraint that the total surface drag force must be independent of the LES filter scale. The weighted integral $\sigma_{\eta}^{\Delta}$ represents the effective amplitude of the SGS waves, for which five candidate models are reviewed. Following the computational tests presented in Yang et al. (J. Fluid Mech., in press, 2013), in this study the performance of the dynamic SGS sea-surface roughness models is assessed by a theoretical approach, in which the roughness model is coupled with the critical-layer theory of wind–wave interaction. This theoretical approach mimics the averaged behavior of the LES. Meanwhile, its low computation cost allows the assessment of the model performance over a wide range of parameters. The test results indicate that the dynamic modeling approach can reliably model the roughness length of the SGS waves without ad-hoc prescription of the model parameter α w . Also, we confirm that to model $\sigma_{\eta}^{\Delta}$ , an expression based on the kinematics of wind–wave relative motion achieves the best performance among the five candidate models considered.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700