用户名: 密码: 验证码:
Construction of a high density linkage map and its application in the identification of QTLs for soluble sugar and organic acid components in apple
详细信息    查看全文
  • 作者:Baiquan Ma ; Shuang Zhao ; Benhong Wu ; Dongmei Wang ; Qian Peng…
  • 关键词:Apple ; Soluble sugars ; Organic acids ; Linkage map ; Genetic mapping
  • 刊名:Tree Genetics & Genomes
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:12
  • 期:1
  • 全文大小:823 KB
  • 参考文献:Alspach PA, Oraguzie NC (2002) Estimation of genetic parameters of apple (Malus×domestica) fruit quality from open-pollinated families. N Z J Crop Hortic Sci 30:219–228CrossRef
    Antanaviciute L, Fernández-Fernández F, Jansen J, Banchi E, Evans KM, Viola R, Velasco R, Dunwell JM, Troggio M, Sargent DJ (2012) Development of a dense SNP-based linkage map of an apple rootstock progeny using the Malus Infinium whole genome genotyping array. BMC Genomics 13:203PubMedCentral CrossRef PubMed
    Bai T, Zhu Y, Fernández-Fernández F, Keulemans J, Brown S, Xu K (2012a) Fine genetic mapping of the Co locus controlling columnar growth habit in apple. Mol Genet Genomics 287:437–450CrossRef PubMed
    Bai Y, Dougherty L, Li M, Fazio G, Cheng L, Xu K (2012b) A natural mutation-led truncation in one of the two aluminum-activated malate transporter-like genes at the Ma locus is associated with low fruit acidity in apple. Mol Genet Genomics 287:663–678CrossRef PubMed
    Belfanti E, Silfverberg-Dilworth E, Tartarini S, Patocchi A, Barbieri M, Zhu J, Vinatzer BA, Gianfranceschi L, Gessler C, Sansavini S (2004) The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc Natl Acad Sci 101:886–890PubMedCentral CrossRef PubMed
    Bianco L, Cestaro A, Sargent DJ, Banchi E, Derdak S, Di Guardo M, Salvi S, Jansen J, Viola R, Gut I, Laurens F, Chagné D, Velasco R, van de Weg E, Troggio M (2014) Development and validation of a 20K single nucleotide polymorphism (SNP) whole genome genotyping array for apple (Malus×domestica Borkh). PLoS One 9:e110377PubMedCentral CrossRef PubMed
    Borsani J, Budde CO, Porrini L, Lauxmann MA, Lombardo VA, Murray R, Andreo CS, Drincovich MF, Lara MV (2009) Carbon metabolism of peach fruit after harvest: changes in enzymes involved in organic acid and sugar level modifications. J Exp Bot 60:1823–1837CrossRef PubMed
    Brunel N, Leduc N, Poupard P, Simoneau P, Mauget JC, Viémont JD (2002) KNAP2, a class I KN1-like gene is a negative marker of bud growth potential in apple trees (Malus domestica [L.] Borkh.). J Exp Bot 53:2143–2149CrossRef PubMed
    Calenge F, Durel CE (2006) Both stable and unstable QTLs for resistance to powdery mildew are detected in apple after four years of field assessments. Mol Breed 17:329–339CrossRef
    Chagné D, Crowhurst RN, Troggio M, Davey MW, Gilmore B, Lawley C, Vanderzande S, Hellens RP, Kumar S, Cestaro A, Velasco R, Main D, Rees JD, Iezzoni A, Mockler T, Wilhelm L, Van de Weg E, Gardiner SE, Bassi N, Peace C (2012) Genome-wide SNP detection, validation, and development of an 8K SNP array for apple. PLoS One 7:e31745PubMedCentral CrossRef PubMed
    Chardon F, Bedu M, Calenge F, Klemens PAW, Spinner L, Clement G, Chietera G, Léran S, Ferrand M, Lacombe B, Loudet O, Dinant S, Bellini C, Neuhaus HE, Daniel-Vedele F, Krapp A (2013) Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis. Curr Biol 23:697–702CrossRef PubMed
    Chen FX, Liu XH, Chen LS (2009) Developmental changes in pulp organic acid concentration and activities of acid-metabolising enzymes during the fruit development of two loquat (Eriobotrya japonica Lindl.) cultivars differing in fruit acidity. Food Chem 114:657–664CrossRef
    Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R (1999) Mapping QTLs controlling fruit quality in peach (Prunus persica (L.) Batsch). Theor Appl Genet 98:18–31CrossRef
    Di Guardo M, Tadiello A, Farneti B, Lorenz G, Masuero D, Vrhovsek U, Costa G, Velasco R, Costa F (2013) A multidisciplinary approach providing new insight into fruit flesh browning physiology in apple (Malus x domestica Borkh.). PLos one 8:e78004
    Doty TE (1976) Fructose sweetness: a new dimension. Cereal Foods World 21:62–63
    Etienne C, Rothan C, Moing A, Plomion C, Bodénès C, Svanella-Dumas L, Cosson P, Pronier V, Monet R, Dirlewanger E (2002) Candidate genes and QTLs for sugar and organic acid content in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105:145–159CrossRef PubMed
    Etienne A, Génard M, Lobit P, Mbeguié-A-Mbéguié D, Bugaud C (2013) What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. J Exp Bot 64:1451–1469CrossRef PubMed
    Espley RV, Brendolise C, Chagné D, Kutty-Amma S, Green S, Volz R, Putterill J, Schouten HJ, Gardiner SE, Hellens RP, Allan AC (2009) Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. Plant Cell 21:168–183PubMedCentral CrossRef PubMed
    Falginella L, Cipriani G, Monte C, Gregori R, Testolin R, Velasco R, Troggio M, Tartarini S (2015) A major QTL controlling apple skin russeting maps on the linkage group 12 of ‘Renetta Grigia di Torriana’. BMC Plant Biol 15:150PubMedCentral CrossRef PubMed
    Gardiner SE, Norelli JL, de Silva N, Fazio G, Peil A, Malnoy M, Horner M, Bowatte D, Carlisle C, Wiedow C, Wan Y, Bassett CL, Baldo AM, Celton JM, Richter K, Aldwinckle HS, Bus VG (2012) Putative resistance gene markers associated with quantitative trait loci for fire blight resistance in Malus ‘Robusta 5’ accessions. BMC Genet 13:25PubMedCentral CrossRef PubMed
    Gardner KM, Brown P, Cooke TF, Cann S, Costa F, Bustamante C, Velasco R, Troggio M, Myles S (2014) Fast and cost-effective genetic mapping in apple using next-generation sequencing. G3 4:1681–1687PubMedCentral CrossRef PubMed
    Graham J, Hackett CA, Smith K, Woodhead M, Hein I, McCallum S (2009) Mapping QTLs for developmental traits in raspberry from bud break to ripe fruit. Theor Appl Genet 118:1143–1155CrossRef PubMed
    Guan Y, Peace C, Rudell D, Verma S, Evan K (2015) QTLs detected for individual sugars and soluble solids content in apple. Mol Breed 35:135CrossRef
    Hafke JB, Hafke Y, Smith JAC, Lüttge U, Thiel G (2003) Vacuolar malate uptake is mediated by an anion-selective inward rectifier. Plant J 35:116–128CrossRef PubMed
    Han YP, Zheng D, Vimolmangkang S, Khan MA, Beever JE, Korban SS (2011) Integration of physical and genetic maps in apple confirms whole genome and segmental duplications in the apple genome. J Exp Bot 62:5117–5130PubMedCentral CrossRef PubMed
    Iannetta PPM, Escobar NM, Ross HA, Souleyre EJF, Hancock RD, Witte C-P, Davies HV (2004) Identification, cloning and expression analysis of strawberry (Fragaria×ananassa) mitochondrial citrate synthase and mitochondrial malate dehydrogenase. Physiol Plant 121:15–26CrossRef PubMed
    Inglese P, Costanza P, Gugliuzza G, Inglese G, Liguori G (2010) Influence of within-tree and environmental factors on fruit quality of cactus pear (Opuntia ficus-indica) in Italy. Fruits 65:179–189CrossRef
    Kader AA (2008) Flavor quality of fruits and vegetables. J Sci Food Agric 88:1863–1868CrossRef
    Kenis K, Keulemans J (2007) Study of tree architecture of apple (Malus × domestica Borkh.) by QTL analysis of growth traits. Mol Breeding 19:193–208
    Kenis K, Keulemans J, Davey MW (2008) Identification and stability of QTLs for fruit quality traits in apple. Tree Genet Genomes 4:647–661CrossRef
    Khan SA, Chibon PY, de Vos RC, Schipper BA, Walraven E, Beekwilder J, van Dijk T, Finkers R, Visser RG, van de Weg EW, Bovy A, Cestaro A, Velasco R, Jacobsen E, Schouten HJ (2012a) Genetic analysis of metabolites in apple fruits indicates an mQTL hotspot for phenolic compounds on linkage group 16. J Exp Bot 63:2895–2908PubMedCentral CrossRef PubMed
    Khan MA, Han Y, Zhao YF, Troggio M, Korban SS (2012b) A multi-population consensus genetic map reveals inconsistent marker order among maps likely attributed to structural variations in the apple genome. PLoS One 7:e47864PubMedCentral CrossRef PubMed
    Khan MA, Han Y, Zhao YF, Korban SS (2012c) A high-throughput apple SNP genotyping platform using the GoldenGate™ assay. Gene 494:196–201CrossRef PubMed
    Khan MA, Olsen KM, Sovero V, Kushad MM, Korban SS (2014) Fruit quality traits have played critical roles in domestication of the apple. Plant Genome 7:1–18CrossRef
    Khan SA, Beekwilder J, Schaart JG, Mumm R, Soriano JM, Jacobsen E, Schouten HJ (2013) Differences in acidity of apples are probably mainly caused by a malic acid transporter gene on LG16. Tree Genet Genomes 9:475–487CrossRef
    Klemens PAW, Patzke K, Deitmer J, Spinner L, Hir RL, Bellini C, Bedu M, Chardon F, Krapp A, Neuhaus HE (2013) Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis. Plant Physiol 163:1338–1352PubMedCentral CrossRef PubMed
    Kumar S, Garrick DJ, Bink MC, Whitworth C, Chagné D, Volz RK (2013) Novel genomic approaches unravel genetic architecture of complex traits in apple. BMC Genomics 14:393PubMedCentral CrossRef PubMed
    Kunihisa M, Moriya S, Abe K, Okada K, Haji T, Hayashi T, Kim H, Nishitani C, Terakami S, Yamamoto T (2014) Identification of QTLs for fruit quality traits in Japanese apples: QTLs for early ripening are tightly related to preharvest fruit drop. Breed Sci 64:240–251PubMedCentral CrossRef PubMed
    Le Roux PM, Khan MA, Broggini GA, Duffy B, Gessler C, Patocchi A (2010) Mapping of quantitative trait loci for fire blight resistance in the apple cultivars ‘Florina’ and ‘Nova Easygro’. Genome 53:710–722CrossRef PubMed
    Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van De Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus x domestica Borkh.). Mol Breed 10:217–241CrossRef
    Liebhard R, Koller B, Gianfranceschi L, Gessler C (2003a) Creating a saturated reference map for the apple (Malus x domestica Borkh.) genome. Theor Appl Genet 106:1497–1508PubMed
    Liebhard R, Kellerhals M, Pfammatter W, Jertmini M, Gessler C (2003b) Mapping quantitative physiological traits in apple (Malus × domestica Borkh.). Plant Mol Biol 52:511–526CrossRef PubMed
    Longhi S, Giongo L, Buti M, Surbanovski N, Viola R, Velasco R, Ward JA, Sargent DJ (2014) Molecular genetics and genomics of the Rosoideae: state of the art and future perspectives. Hortic Res 1:1PubMedCentral CrossRef PubMed
    Longhi S, Moretto M, Viola R, Velasco R, Costa F (2012) Comprehensive QTL mapping survey dissects the complex fruit texture physiology in apple (Malus x domestica Borkh.). J Exp Bot 63:1107–1121CrossRef PubMed
    Longhi S, Hamblin MT, Trainotti L, Peace CP, Velasco R, Fabrizio C (2013) A candidate gene based approach validates Md-PG1 as the main responsible for a QTL impacting fruit texture in apple (Malus × domestica Borkh). BMC Plant Biol 13:37PubMedCentral CrossRef PubMed
    Ma BQ, Liao L, Zheng HY, Chen J, Wu BH, Ogutu C, Li SH, Korban SS, Han YP (2015a) Genes encoding aluminum-activated malate transporter II and their association with fruit acidity in apple. Plant Genome 8: doi: 10.3835
    Ma BQ, Chen J, Zheng HY, Fang T, Collins O, Li SH, Han YP, Wu BH (2015b) Comparative assessment of sugar and malic acid composition in cultivated and wild apples. Food Chem 172:86–91CrossRef PubMed
    Maliepaard C, Alston FH, van Arkel G, Brown LM, Chevreau E, Dunemann KM, Gaediner S, Guilford P, van Heusden AW, Janse J, Laurens F, Lynn JR, Manganaris AG, den Nijs APM, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh JJ, Vrielink-van Ginkel M, King GJ (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet 97:60–73CrossRef
    Mellidou I, Chagné D, Laing WA, Keulemans J, Davey MW (2012) Allelic variation in paralogs of GDP-L-galactose phosphorylase is a major determinant of vitamin C concentrations in apple fruit. Plant Physiol 160:1613–1629PubMedCentral CrossRef PubMed
    Paterson AH, Damon S, Hewitt JD, Zamir D, Rabinowith HD, Lincoln SE, Lander ES, Tanksley SD (1991) Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics 127:181–197PubMedCentral PubMed
    Potts SM, Khan MA, Han Y, Kushad MM, Korban SS (2014) Identification of quantitative trait loci (QTLs) for fruit quality traits in apple. Plant Mol Biol Report 32:109–116CrossRef
    Rentsch D, Martinoia E (1991) Citrate transport into barley mesophyll vacuoles—comparison with malate uptake activity. Planta 184:532–537CrossRef PubMed
    Sadka A, Dahan E, Or E, Roose ML, Marsh KB, Cohen L (2001) Comparative analysis of mitochondrial citrate synthase gene structure, transcript level and enzymatic activity in acidless and acid-containing Citrus varieties. Funct Plant Biol 28:383–390CrossRef
    Segura V, Cilas C, Costes E (2008) Dissecting apple tree architecture into genetic, ontogenetic and environmental effects: mixed linear modelling of repeated spatial and temporal measures. New Phytol 178:302–314CrossRef PubMed
    Sweetman C, Deluc LG, Cramer GR, Ford CM, Soole KL (2009) Regulation of malate metabolism in grape berry and other developing fruits. Phytochemistry 70:1329–1344CrossRef PubMed
    van Dyk MM, Soeker MK, Labuschagne IF, Rees DJG (2010) Identification of a major QTL for time of initial vegetative budbreak in apple (Malus × domestica Borkh.). Tree Genet Genomes 6:489–502CrossRef
    Van Ooijen JW (2004) MapQTL® 5.0, software for the mapping of quantitative trait loci in experimental populations. Kyazma BV, Wageningen
    Van Ooijen JW (2006) JoinMapW 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen
    Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagné D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouzé P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel CE, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839CrossRef PubMed
    Verweij W, Spelt C, Sansebastiano G-P D, Vermeer J, Reale L, Ferranti F, Koes R, Quattrocchio F (2008) An H+ P-ATPase on the tonoplast determines vacuolar pH and flower colour. Nat Cell Biol 10:1456–1462CrossRef PubMed
    Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78CrossRef PubMed
    Wen T, Qing EX, Zeng W, Liu Y (2001) Study on the change of organic acid synthetase activity during fruit development of navel orange (Citrus sinensis Osbeck). J Sichuan Agric Univ 19:27–30
    Wu J, Gao H, Zhao L, Liao X, Chen F, Wang Z, Hu X (2007) Chemical compositional characterization of some apple cultivars. Food Chem 103:88–93CrossRef
    Wu J, Li LT, Li M, Khan MA, Li XG, Chen H, Yin H, Zhang SL (2014) High-density genetic linkage map construction and identification of fruit-related QTLs in pear using SNP and SSR markers. J Exp Bot 65:5771–5781PubMedCentral CrossRef PubMed
    Xu M, Korban SS (2002) A cluster of four receptor-like genes resides in the Vf locus that confers resistance to apple scab disease. Genetics 162:1995–2006PubMedCentral PubMed
    Xu K, Wang A, Brown S (2012) Genetic characterization of the Ma locus with pH and titratable acidity in apple. Mol Breed 30:899–912CrossRef
    Yao YX, Li M, Zhai H, You CX, Hao YJ (2011) Isolation and characterization of an apple cytosolic malate dehydrogenase gene reveal its function in malate synthesis. J Plant Physiol 168:474–480CrossRef PubMed
    Young TE, Juvik JA, Sullivan JG (1993) Accumulation of the components of total solids in ripening fruits of tomato. J Am Soc Hortic Sci 118:286–292
    Zhang Q, Ma B, Li H, Chang Y, Han Y, Li J, Wei G, Zhao S, Khan MA, Zhou Y, Gu C, Zhang X, Han Z, Korban SS, Li S, Han Y (2012) Identification, characterization, and utilization of genome-wide simple sequence repeats to identify a QTL for acidity in apple. BMC Genomics 13:537PubMedCentral CrossRef PubMed
    Zohary D, Hopf M (2000) Domestication of plants in the old word: the origin and spread of cultivated plants in West Asia, Europe and the Nile Valley. Oxford Univ Press, Oxford
  • 作者单位:Baiquan Ma (1) (3)
    Shuang Zhao (1) (3)
    Benhong Wu (2)
    Dongmei Wang (4)
    Qian Peng (1) (3)
    Albert Owiti (1) (3)
    Ting Fang (1) (3)
    Liao Liao (1)
    Collins Ogutu (1) (3)
    Schuyler S. Korban (5)
    Shaohua Li (2)
    Yuepeng Han (1)

    1. Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, China
    3. Graduate University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
    2. Beijing Key Laboratory of Grape Sciences and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
    4. Liaoning Province Institute of Pomology, Xiongyue, Liaoning Province, 115214, China
    5. Department of Biology, University of Massachusetts Boston, Boston, MA, 02184, USA
  • 刊物主题:Forestry; Plant Genetics & Genomics; Plant Breeding/Biotechnology; Tree Biology; Biotechnology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1614-2950
文摘
Soluble sugars and organic acids have a strong impact on the overall organoleptic quality of fruits. In this study, we report the identification of quantitative trait loci (QTLs) for individual sugars and organic acids in apple. A high density linkage map of apple was constructed using the 1536 EST-derived SNP GoldenGate genotyping platform. The linkage map consists of 601 molecular markers, including 540 single nucleotide polymorphisms (SNPs) and 61 simple sequence repeats (SSRs), spanning 1368.4 cM with an average of 2.28 cM per marker. The contents of soluble sugars, including sucrose, glucose, fructose, sorbitol, and organic acids, including malic acid and citric acid, were used as the phenotypic data in QTL analysis. Two QTLs for malic acid content were detected on linkage groups (LGs) 8 and 16, while no QTL was found for citric acid content. Four QTLs for the glucose, sucrose, fructose, and sorbitol content were found to be clustered in one region on LG 3. Moreover, an additional QTL for glucose content was detected on the LG 4. Our study not only expands our understanding of the genetic basis for fruit organoleptic quality but it also provides molecular markers that will aid in marker-assisted selection for fruit quality in apple breeding programs. Keywords Apple Soluble sugars Organic acids Linkage map Genetic mapping

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700