用户名: 密码: 验证码:
Separation of gold nanorods by viscosity gradient centrifugation
详细信息    查看全文
  • 作者:Suli Dong ; Yawei Wang ; Yang Tu ; Aiye Liang ; Xiaogang Li…
  • 关键词:Nanoparticles ; Sedimentation ; Size dispersion ; Poly(2 ; ethyl ; 2 ; oxazoline) ; Nanomaterial ; Transmission electron microscopy
  • 刊名:Microchimica Acta
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:183
  • 期:3
  • 页码:1269-1273
  • 全文大小:565 KB
  • 参考文献:1.Eghtedari M, Liopo AV, Copland JA, Oraevslty AA, Motamedi M (2009) Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells. Nano Lett 9(1):287–291. doi:10.​1021/​nl802915q CrossRef
    2.Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41(12):1721–1730. doi:10.​1021/​ar800035u CrossRef
    3.Parab HJ, Chen HM, Lai T-C, Huang JH, Chen PH, Liu R-S, Hsiao M, Chen C-H, Tsai D-P, Hwu Y-K (2009) Biosensing, cytotoxicity, and cellular uptake studies of surface-modified gold nanorods. J Phys Chem C 113(18):7574–7578. doi:10.​1021/​jp9000169 CrossRef
    4.Dickerson EB, Dreaden EC, Huang X, El-Sayed IH, Chu H, Pushpanketh S, McDonald JF, El-Sayed MA (2008) Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 269(1):57–66. doi:10.​1016/​j.​canlet.​2008.​04.​026 CrossRef
    5.Oyelere AK, Chen PC, Huang X, El-Sayed IH, El-Sayed MA (2007) Peptide-conjugated gold nanorods for nuclear targeting. Bioconjug Chem 18(5):1490–1497. doi:10.​1021/​bc070132i CrossRef
    6.Salem AK, Searson PC, Leong KW (2003) Multifunctional nanorods for gene delivery. Nat Mater 2(10):668–671. doi:10.​1038/​nmat974 CrossRef
    7.Wijaya A, Schaffer SB, Pallares IG, Hamad-Schifferli K (2009) Selective release of multiple DNA oligonucleotides from gold nanorods. ACS Nano 3(1):80–86. doi:10.​1021/​nn800702n CrossRef
    8.Ye X, Jin L, Caglayan H, Chen J, Xing G, Zheng C, Vicky D-N, Kang Y, Engheta N, Kagan CR, Murray CB (2012) Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS Nano 6(3):2804–2817. doi:10.​1021/​nn300315j CrossRef
    9.Jia J-L, Xu H-H, Zhang G-R, Hu Z, Xu B-Q (2012) High quality gold nanorods and nanospheres for surface-enhanced Raman scattering detection of 2,4-dichlorophenoxyacetic acid. Nanotechnology 23(49). doi:10.​1088/​0957-4484/​23/​49/​495710
    10.Li S, Chang Z, Liu J, Bai L, Luo L, Sun X (2011) Separation of gold nanorods using density gradient ultracentrifugation. Nano Res 4(8):723–728. doi:10.​1007/​s12274-011-0128-7 CrossRef
    11.Sharma V, Park K, Srinivasarao M (2009) Shape separation of gold nanorods using centrifugation. Proc Natl Acad Sci U S A 106(13):4981–4985. doi:10.​1073/​pnas.​0800599106 CrossRef
    12.Steinigeweg D, Schuetz M, Salehi M, Schluecker S (2011) Fast and cost-effective purification of gold nanoparticles in the 20–250 nm size range by continuous density gradient centrifugation. Small 7(17):2443–2448. doi:10.​1002/​smll.​201100663 CrossRef
    13.Xiong B, Cheng J, Qiao Y, Zhou R, He Y, Yeung ES (2011) Separation of nanorods by density gradient centrifugation. J Chromatogr A 1218(25):3823–3829. doi:10.​1016/​j.​chroma.​2011.​04.​038 CrossRef
    14.Wei GT, Liu FK, Wang CRC (1999) Shape separation of nanometer cold particles by size-exclusion chromotography. Anal Chem 71(11):2085–2091. doi:10.​1021/​ac990044u CrossRef
    15.Jana NR (2003) Nanorod shape separation using surfactant assisted self-assembly. Chem Commun 15:1950–1951. doi:10.​1039/​b303103a CrossRef
    16.Park K, Koerner H, Vaia RA (2010) Depletion-induced shape and size selection of gold nanoparticles. Nano Lett 10(4):1433–1439. doi:10.​1021/​nl100345u CrossRef
    17.Wu J, Jia W, Lu W, Jiang L (2012) Shape homogenization and long-range arrangement of gold nanorods using a pH-responsive multiamine surfactant. ACS Appl Mater Interfaces 4(12):6560–6564. doi:10.​1021/​am302507u CrossRef
    18.Von White II G, Provost MG, Kitchens CL (2012) Fractionation of surface-modified gold nanorods using gas-expanded liquids. Ind Eng Chem Res 51(14):5181–5189. doi:10.​1021/​ie201975p CrossRef
    19.Gigault J, Cho TJ, MacCuspie RI, Hackley VA (2013) Gold nanorod separation and characterization by asymmetric-flow field flow fractionation with UV-vis detection. Anal Bioanal Chem 405(4):1191–1202. doi:10.​1007/​s00216-012-6547-9 CrossRef
    20.Nguyen TM, Gigault J, Hackley VA (2014) PEGylated gold nanorod separation based on aspect ratio: characterization by asymmetric-flow field flow fractionation with UV-vis detection. Anal Bioanal Chem 406(6):1651–1659. doi:10.​1007/​s00216-013-7318-y CrossRef
    21.Runyon JR, Goering A, Yong K-T, Williams SKR (2013) Preparation of narrow dispersity gold nanorods by asymmetrical flow field-flow fractionation and investigation of surface Plasmon resonance. Anal Chem 85(2):940–948. doi:10.​1021/​ac302571g CrossRef
    22.Qiu P, Mao C (2011) Viscosity gradient as a novel mechanism for the centrifugation-based separation of nanoparticles. Adv Mater 23(42):4880–4885. doi:10.​1002/​adma.​201102636 CrossRef
    23.Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15(10):1957–1962. doi:10.​1021/​cm020732l CrossRef
    24.Akbulut O, Mace CR, Martinez RV, Kumar AA, Nie Z, Patton MR, Whitesides GM (2012) Separation of nanoparticles in aqueous multiphase systems through centrifugation. Nano Lett 12(8):4060–4064. doi:10.​1021/​nl301452x CrossRef
    25.Sperling RA (1915) Parak, WJ (2010) surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos Trans R Soc A Math Phys Eng Sci 368:1333–1383. doi:10.​1098/​rsta.​2009.​0273 CrossRef
  • 作者单位:Suli Dong (1)
    Yawei Wang (1)
    Yang Tu (2)
    Aiye Liang (3)
    Xiaogang Li (1)
    Qingquan Zhang (1)
    Xiaojun Liu (1)

    1. Jiangsu Key Laboratory of Green Synthesis for Functional Materials, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
    2. Environmental Protection Bureau of Hongze County, Huaian, 223100, China
    3. Department of Physical Sciences, Charleston Southern University, 9200 University Boulevard,, North Charleston, SC, 29406, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Inorganic Chemistry
    Physical Chemistry
    Characterization and Evaluation Materials
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Wien
  • ISSN:1436-5073
文摘
Size-uniform gold nanorods (Au-NRs) are used in biosensing, bioimaging, photothermal therapy, drug and gene delivery, and controlled release. Monodisperse Au-NRs are usually obtained by separation steps following their synthesis, and centrifugation is widely used because of the ease of operation, high recovery, and the good availability of equipment. So far, the effect of viscosity on the separation of Au-NRs has not been investigated. We have developed a method for separation of monodisperse Au-NRs that is based on centrifugation in a viscosity gradient. Monodisperse Au-NRs obtained from gold nanoparticles were obtained by centrifugation in viscosity gradient adjusted with poly(2-ethyl-2-oxazoline). Au-NRs in sizes ranging from 25.6 to 26.1 nm in effective radius can be separated 5500 g within 5 min, which appears to be the fastest method for separation of Au-NRs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700