用户名: 密码: 验证码:
Robustness of s-wave pairing symmetry in iron-based superconductors and its implications for fundamentals of magnetically driven high-temperature superconductivity
详细信息    查看全文
  • 作者:Jiangping Hu ; Jing Yuan
  • 关键词:iron ; based superconductors ; cuprates ; unconventional superconductivity ; high ; temperature superconductors
  • 刊名:Frontiers of Physics
  • 出版年:2016
  • 出版时间:October 2016
  • 年:2016
  • 卷:11
  • 期:5
  • 全文大小:422 KB
  • 参考文献:1.Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, Iron-based superconductor with LaO1-x FxFeAs (x = 0.05- 0.12) with Tc = 26 K, J. Am. Chem. Soc. 130(11), 3296 (2008)CrossRef
    2.N. Wang, H. Hosono, and P. Dai, Iron-based superconductors: Materials, properties and mechanisms, Pan Stanford Publishing PTE Ltd., 2012
    3.D. C. Johnston, The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides, Adv. Phys. 59(6), 803 (2010)ADS CrossRef
    4.E. Dagotto, The unexpected properties of alkali metal iron selenide superconductors, Rev. Mod. Phys. 85(2), 849 (2013)ADS CrossRef
    5.P. C. Dai, J. P. Hu, and E. Dagotto, Magnetism and its microscopic origin in iron-based high-temperature superconductors, Nat. Phys. 8(10), 709 (2012)CrossRef
    6.P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Gap symmetry and structure of Fe-based superconductors, Rep. Prog. Phys. 74(12), 124508 (2011)ADS CrossRef
    7.J. P. Hu, Iron-based superconductors as odd parity superconductors, Phys. Rev. X 3(3), 031004 (2013)
    8.N. N. Hao and J. P. Hu, Odd parity pairing and nodeless antiphase s in iron-based superconductors, Phys. Rev. B 89(4), 045144 (2014)ADS CrossRef
    9.C. C. Tsuei and J. R. Kirtley, Pairing symmetry in cuprate superconductors, Rev. Mod. Phys. 72(4), 969 (2000)ADS CrossRef
    10.D. J. Scalapino, The cuprate pairing mechanism, Science 284(5418), 1282 (1999)CrossRef
    11.P. W. Anderson, P. A. Lee, M. Randeria, T. M. Rice, N. Trivedi, and F. C. Zhang, The physics behind hightemperature superconducting cuprates: The “plain vanilla” version of RVB, J. Phys.: Condens. Matter 16(24), R755 (2004)ADS
    12.Q. M. Si and E. Abrahams, Strong correlations and magnetic frustration in the high-Tc iron pnictides, Phys. Rev. Lett. 101(7), 076401 (2008)ADS CrossRef
    13.K. J. Seo, B. A. Bernevig, and J. P. Hu, Pairing symmetry in a two-orbital exchange coupling model of oxypnictides, Phys. Rev. Lett. 101(20), 206404 (2008)ADS CrossRef
    14.C. Fang, Y. L. Wu, R. Thomale, B. A. Bernevig, and J. Hu, Robustness of s-wave pairing in electron-overdoped A1-y Fe2-x Se2, Phys. Rev. X 1(1), 011009 (2011)
    15.P. Richard, T. Qian, and H. Ding, ARPES measurements of the superconducting gap of Fe-based superconductors and their implications to the pairing mechanism, arXiv: 1503.07269 (2015)
    16.Q. Fan, W. H. Zhang, X. Liu, Y. J. Yan, M. Q. Ren, R. Peng, H. C. Xu, B. P. Xie, J. P. Hu, T. Zhang, and D. L. Feng, Plain s-wave superconductivity in single-layer FeSe on SrTiO3 probed by scanning tunneling microscopy, arXiv: 1504.02185 (2015)
    17.X. H. Niu, R. Peng, H. C. Xu, Y. J. Yan, J. Jiang, D. F. Xu, T. L. Yu, Q. Song, Z. C. Huang, Y. X. Wang, B. P. Xie, X. F. Lu, N. Z. Wang, X. H. Chen, Z. Sun, and D. L. Feng, Surface electronic structure and isotropic superconducting gap in Li0.8Fe0.2OHFeSe, arXiv: 1506.02825 (2015)
    18.L. Zhao, A. Liang, D. Yuan, Y. Hu, D. Liu, J. Huang, S. He, B. Shen, Y. Xu, X. Liu, L. Yu, G. Liu, H. Zhou, Yulong Huang, X. Dong, F. Zhou, Z. Zhao, C. Chen, Z. Xu, and X. J. Zhou, Common electronic origin of superconductivity in (Li,Fe)OHFeSe bulk superconductor and single-layer FeSe/SrTiO 3 films, arXiv: 1505.6361 (2015)
    19.P. A. Lee and X. G. Wen, Spin-triplet p-wave pairing in a three-orbital model for iron pnictide superconductors, Phys. Rev. B 78(14), 144517 (2008)ADS CrossRef
    20.V. Cvetkovic and O. Vafek, Space group symmetry, spinorbit coupling, and the low-energy effective hamiltonian for iron-based superconductors, Phys. Rev. B 88(13), 134510 (2013)ADS CrossRef
    21.Y. Zhang, L. X. Yang, M. Xu, Z. R. Ye, F. Chen, C. He, H. C. Xu, J. Jiang, B. P. Xie, J. J. Ying, X. F. Wang, X. H. Chen, J. P. Hu, M. Matsunami, S. Kimura, and D. L. Feng, Nodeless superconducting gap in AxFe2Se2 (A=K,Cs) revealed by angle-resolved photoemission spectroscopy, Nat. Mater. 10(4), 273 (2011)ADS CrossRef
    22.Q. Y. Wang, Z. Li, W. H. Zhang, Z. C. Zhang, J. S. Zhang, W. Li, H. Ding, Y. B. Ou, P. Deng, K. Chang, J. Wen, C. L. Song, K. He, J. F. Jia, S. H. Ji, Y. Y. Wang, L. L.Wang, X. Chen, X. C. Ma, and Q. K. Xue, Interface-induced hightemperature superconductivity in single unit-cell FeSe films on SrTiO3, Chin. Phys. Lett. 29(3), 037402 (2012)ADS CrossRef
    23.S. L. He, J. He, W. Zhang, L. Zhao, D. Liu, X. Liu, D. Mou, Y. B. Ou, Q. Y. Wang, Z. Li, L. Wang, Y. Peng, Y. Liu, C. Chen, L. Yu, G. Liu, X. Dong, J. Zhang, C. Chen, Z. Xu, X. Chen, X. Ma, Q. Xue, and X. J. Zhou, Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films, Nat. Mater. 12(7), 605 (2013)ADS CrossRef
    24.S. Y. Tan, Y. Zhang, M. Xia, Z. Ye, F. Chen, X. Xie, R. Peng, D. Xu, Q. Fan, H. Xu, J. Jiang, T. Zhang, X. Lai, T. Xiang, J. Hu, B. Xie, and D. Feng, Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films, Nat. Mater. 12(7), 634 (2013)ADS CrossRef
    25.M. Xu, Q. Q. Ge, R. Peng, Z. R. Ye, J. Jiang, F. Chen, X. P. Shen, B. P. Xie, Y. Zhang, A. F. Wang, X. F. Wang, X. H. Chen, and D. L. Feng, Evidence for an s-wave superconducting gap in KxFe2-ySe2 from angle-resolved photoemission, Phys. Rev. B 85(22), 220504 (2012)ADS CrossRef
    26.X. Liu, L. Zhao, S. He, J. He, D. Liu, D. Mou, B. Shen, Y. Hu, J. Huang, and X. J. Zhou, Electronic structure and superconductivity of FeSe-related superconductors, J. Phys.: Condens. Matter 27(18), 183201 (2015)ADS
    27.I. I. Mazin, Symmetry analysis of possible superconducting states in KxFe2Se2 superconductors, Phys. Rev. B 84(2), 024529 (2011)ADS CrossRef
    28.F. F. Tafti, A. Ouellet, A. Juneau-Fecteau, S. Faucher, M. Lapointe-Major, N. Doiron-Leyraud, A. F. Wang, X.G. Luo, X. H. Chen, and L. Taillefer, Universal V-shaped temperature-pressure phase diagram in the iron-based superconductors KFe2As2, RbFe2 As2, and CsFe2As2, Phys. Rev. B 91(5), 054511 (2015)ADS CrossRef
    29.Y. Ota, K. Okazaki, Y. Kotani, T. Shimojima, W. Malaeb, S. Watanabe, C.T. Chen, K. Kihou, C. H. Lee, A. Iyo, H. Eisaki, T. Saito, H. Fukazawa, Y. Kohori, and S. Shin, Evidence for excluding the possibility of dwave superconducting-gap symmetry in Ba-doped KFe2As2, Phys. Rev. B 89(8), 081103 (2014)ADS CrossRef
    30.K. Okazaki, Y. Ota, Y. Kotani, W. Malaeb, Y. Ishida, T. Shimojima, T. Kiss, S. Watanabe, C.T. Chen, K. Kihou, C. H. Lee, A. Iyo, H. Eisaki, T. Saito, H. Fukazawa, Y. Kohori, K. Hashimoto, T. Shibauchi, Y. Matsuda, H. Ikeda, H. Miyahara, R. Arita, A. Chainani, and S. Shin, Octetline node structure of superconducting order parameter in KFe2As2, Science 337(6100), 1314 (2012)ADS CrossRef
    31.Y. Zhang, Z. R. Ye, Q. Q. Ge, F. Chen, J. Jiang, M. Xu, B. P. Xie, and D. L. Feng, Nodal superconducting-gap structure in ferropnictide superconductor BaFe2(As0.7P0.3)2, Nat. Phys. 8(5), 371 (2012)CrossRef
    32.X. Qiu, S. Y. Zhou, H. Zhang, B. Y. Pan, X. C. Hong, Y. F. Dai, M. J. Eom, J. S. Kim, Z. R. Ye, Y. Zhang, D. L. Feng, and S. Y. Li, Robust nodal superconductivity induced by isovalent doping in Ba(Fe1-x Rux)2As2 and BaFe2(As1-x Px)2, Phys. Rev. X 2(1), 011010 (2012)
    33.N. Bickers, D. J. Scalapino, and R. T. Scalettar, Cdw and sdw mediated pairing interactions, Int. J. Mod. Phys. B 01(03n04), 687 (1987)ADS CrossRef
    34.M. Inui, S. Doniach, P. Hirschfeld, and A. Ruckenstein, Coexistence of antiferromagnetism and superconductivity in a mean-field theory of high-Tc superconductors, Phys. Rev. B 37(4), 2320 (1988)ADS CrossRef
    35.C. Gros, D. Poilblanc, T. M. Rice, and F. C. Zhang, Superconductivity in correlated wavefunctions, Physica C 153–155, 543 (1988)CrossRef
    36.G. Kotliar and J. Liu, Superexchange mechanism and d-wave superconductivity, Phys. Rev. B 38(7), 5142 (1988)ADS CrossRef
    37.W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, and K. Schnhammer, Functional renormalization group approach to correlated fermion systems, Rev. Mod. Phys. 84(1), 299 (2012)ADS CrossRef
    38.F. C. Zhang and T. M. Rice, Effective hamiltonian for the superconducting Cu oxides, Phys. Rev. B 37(7), 3759 (1988)ADS CrossRef
    39.S. Graser, T. A. Maier, P. J. Hirschfeld, and D. J. Scalapino, Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides, New J. Phys. 11(2), 025016 (2009)ADS CrossRef
    40.S. Maiti, M. M. Korshunov, T. A. Maier, P. J. Hirschfeld, and A. V. Chubukov, Evolution of the superconducting state of Fe-based compounds with doping, Phys. Rev. Lett. 107(14), 147002 (2011)ADS CrossRef
    41.F. Wang, H. Zhai, and D. H. Lee, Nodes in the gap function of LaFePo, the gap function of the Fe(Se,Te) systems, and the STM signature of the spairing, Phys. Rev. B 81(18), 184512 (2010)ADS CrossRef
    42.T. A. Maier, S. Graser, P. J. Hirschfeld, and D. J. Scalapino, d-wave pairing from spin fluctuations in the KxFe2-ySe2 superconductors, Phys. Rev. B 83(10), 100515 (2011)ADS CrossRef
    43.R. Thomale, C. Platt, W. Hanke, J. Hu, and B. A. Bernevig, Exotic d-wave superconductivity in strongly hole doped KxBa1-x Fe2As2, Phys. Rev. Lett. 107(11), 117001 (2011)ADS CrossRef
    44.J. P. Hu and H. Ding, Local antiferromagnetic exchange and collaborative Fermi surface as key ingredients of high temperature superconductors, Sci. Rep. 2, 381 (2012)ADS
    45.J. S. Davis and D. H. Lee, Concepts relating magnetic interactions, interwined electronic orders, and strongly correlated superconductivity, Proc. Natl. Acad. Sci. USA 110(44), 17623 (2013)CrossRef
    46.J. P. Hu, B. Xu, W. Liu, N. N. Hao, and Y. Wang, Unified minimum effective model of magnetic properties of ironbased superconductors, Phys. Rev. B 85(14), 144403 (2012)ADS CrossRef
    47.F. Ma, W. Ji, J. Hu, Z. Y. Lu, and T. Xiang, First-principles calculations of the electronic structure of tetragonal alpha- FeTe and alpha-FeSe crystals: Evidence for a bicollinear antiferromagnetic order, Phys. Rev. Lett. 102, 177003 (2009)ADS CrossRef
    48.A. L. Wysocki, K. D. Belashchenko, and V. P. Antropov, Consistent model of magnetism in ferropnictides, Nat. Phys. 7(6), 485 (2011)CrossRef
    49.J. K. Glasbrenner, I. I. Mazin, H. Jeschke, P. J. Hirschfeld, and R. Valent, Effect of magnetic frustration on nematicity and superconductivity in Fe chalcogenides, arXiv: 1501.04946 (2015)
    50.T. Miyake, T. Kosugi, S. Ishibashi, and K. Terakura, Electronic structure of novel superconductor Ca4Al2O6Fe2As2, J. Phys. Soc. Japan 79(12), 123713 (2010)ADS CrossRef
    51.O. Andersen and L. Boeri, On the multi-orbital band structure and itinerant magnetism of iron-based superconductors, Annalen der Physik, 1, 8 (2011)ADS CrossRef MATH
    52.Z. P. Yin, K. Haule, and G. Kotliar, Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides, Nat. Mater. 10(12), 932 (2011)ADS CrossRef
    53.K. Suzuki, H. Usui, S. Iimura, Y. Sato, S. Matsuishi, H. Hosono, and K. Kuroki, Model of the electronic structure of electron-doped iron-based superconductors: Evidence for enhanced spin fluctuations by diagonal electron hopping, Phys. Rev. Lett. 113(2), 027002 (2014)ADS CrossRef
    54.D. Guterding, H. O. Jeschke, P. J. Hirschfeld, and R. Valenti, Unified picture of the doping dependence of superconducting transition temperatures in alkali metal/ammonia intercalated FeSe, Phys. Rev. B 91, 041112(R) (2015)ADS CrossRef
    55.F. Ronning, N. Kurita, E. D. Bauer, B. L. Scott, T. Park, T. Klimczuk, R. Movshovich, and J. D. Thompson, The first order phase transition and superconductivity in BaNi2As2 single crystals, J. Phys.: Condens. Matter 20(34), 342203 (2008)
    56.A. S. Sefat, D. J. Singh, R. Jin, M. A. McGuire, B. C. Sales, and D. Mandrus, Renormalized behavior and proximity of BaCo2As2 to a magnetic quantum critical point, Phys. Rev. B 79(2), 024512 (2009)ADS CrossRef
    57.Y. Singh, A. Ellern, and D. C. Johnston, Magnetic, transport, and thermal properties of single crystals of the layered arsenide BaMn2As2, Phys. Rev. B 79(9), 094519 (2009)ADS CrossRef
    58.D. Gu, X. Dai, C. Le, L. Sun, Q. Wu, B. Saparov, J. Guo, P. Gao, S. Zhang, Y. Zhou, C. Zhang, S. Jin, L. Xiong, R. Li, Y. Li, X. Li, J. Liu, A. S. Sefat, J. Hu, and Z. Zhao, Robust antiferromagnetism preventing superconductivity in pressurized (Ba0.61K0.39)Mn2Bi2, Sci. Rep. 4, 7342 (2014)ADS CrossRef
    59.R. Yang, C. Le, L. Zhang, B. Xu, W. Zhang, K. Nadeem, H. Xiao, J. Hu, and X. Qiu, Formation of As-As bond and its effect on absence of superconductivity in collapsed tetragonal phase of Ca0.86Pr0.14Fe2As2: An optical spectroscopy study, Phys. Rev. B 91(22), 224507 (2015)ADS CrossRef
    60.H. Sakakibara, K. Suzuki, H. Usui, K. Kuroki, R. Arita, D. J. Scalapino, and H. Aoki, Three-orbital study on the orbital distillation effect in the high-Tc cuprates, Phys. Proc. 45, 13 (2013)ADS CrossRef
    61.I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1-x Fx, Phys. Rev. Lett. 101(5), 057003 (2008)ADS CrossRef
  • 作者单位:Jiangping Hu (1) (2) (3)
    Jing Yuan (1)

    1. Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
    2. Department of Physics, Purdue University, West Lafayette, IN, 47907, USA
    3. Collaborative Innovation Center of Quantum Matter, Beijing, 100871, China
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Chinese Library of Science
  • 出版者:Higher Education Press, co-published with Springer-Verlag GmbH
  • ISSN:2095-0470
文摘
Based on the assumption that the superconducting state belongs to a single irreducible representation of lattice symmetry, we propose that the pairing symmetry in all measured iron-based superconductors is generally consistent with the A 1g s-wave. Robust s-wave pairing throughout the different families of iron-based superconductors at different doping regions signals two fundamental principles behind high-T c superconducting mechanisms: (i) the correspondence principle: the short-range magnetic-exchange interactions and the Fermi surfaces act collaboratively to achieve high-T c superconductivity and determine pairing symmetries; (ii) the magnetic-selection pairing rule: superconductivity is only induced by the magnetic-exchange couplings from the super-exchange mechanism through cation-anion-cation chemical bonding. These principles explain why unconventional high-T c superconductivity appears to be such a rare but robust phenomena, with its strict requirements regarding the electronic environment. The results will help us to identify new electronic structures that can support high-T c superconductivity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700