用户名: 密码: 验证码:
Impact of nanocrystallinity segregation on the growth and morphology of nanocrystal superlattices
详细信息    查看全文
  • 作者:Yanfen Wan (1) (2)
    Hervé Portalès (1) (2)
    Nicolas Goubet (1) (2)
    Alain Mermet (3)
    Marie-Paule Pileni (1) (2)
  • 关键词:supracrystals ; close ; packed self ; assembly ; metal nanoparticles ; Raman scattering ; spectroscopy
  • 刊名:Nano Research
  • 出版年:2013
  • 出版时间:August 2013
  • 年:2013
  • 卷:6
  • 期:8
  • 页码:611-618
  • 全文大小:799KB
  • 参考文献:1. Motte, L.; Billoudet, F.; Pileni, M. P. Self-assembled monolayer of nanosized particles differing by their sizes. / J. Phys. Chem. 1995, / 99, 16425-6429. CrossRef
    2. Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. / Science 1995, / 270, 1335-338. CrossRef
    3. Whetten, R. L.; Shafigullin, M. N.; Khoury, J. T.; Schaaff, T. G.; Vezmar, I.; Alvarez, M. M.; Wilkinson, A. Crystal structures of molecular gold nanocrystal arrays. / Acc. Chem. Res. 1999, / 32, 397-06. CrossRef
    4. Prasad, B. L. V.; Sorensen, C. M.; Klabunde, K. J. Gold nanoparticle superlattices. / Chem. Soc. Rev. 2008, / 37, 1871-883. CrossRef
    5. Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. / Annu. Rev. Mater. Sci. 2000, / 30, 545-10. CrossRef
    6. Wang, Z. L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. / J. Phys. Chem. B 2000, / 104, 1153-175. CrossRef
    7. Collier, C. P.; Vossmeyer, T.; Heath, J. R. Nanocrystal superlattice. / Annu. Rev. Phys. Chem. 1998, / 49, 371-04. CrossRef
    8. Shevchenko, E. V.; Talapin, D. V.; Kotov, N. A.; O’Brien, S.; Murray, C. B. Structural diversity in binary nanoparticle superlattices. / Nature 2006, / 439, 55-9. CrossRef
    9. Xie, S.; Zhou, X.; Han, X.; Kuang, Q.; Jin, M.; Jiang, Y.; Xie, Z.; Zheng, L. Supercrystals from crystallization of octahedral MnO nanocrystals. / J. Phys. Chem. C 2009, / 113, 19107-9111. CrossRef
    10. Nozawa, J.; Tsukamoto, K.; van Enckevort, W.; Nakamura, T.; Kimura, Y.; Miura, H.; Satoh, H.; Nagashima, K.; Konoto, M. Magnetite 3D colloidal crystals formed in the early solar system 4.6 billion years ago. / J. Am. Chem. Soc. 2011, / 133, 8782-785. CrossRef
    11. Yarema, M.; Kovalenko, M. V.; Hesser, G.; Talapin, D. V.; Heiss, W. Highly monodisperse bismuth nanoparticles and their three-dimensional superlattices. / J. Am. Chem. Soc. 2010, / 132, 15158-5159. CrossRef
    12. Park, S. Y.; Lytton-Jean, A. K. R.; Lee, B.; Weigand, S.; Schatz, G. C.; Mirkin, C. A. DNA-programmable nanoparticle crystallization. / Nature 2008, / 451, 553-56. CrossRef
    13. Lisiecki, I.; Albouy, P. A.; Pileni, M. P. Face-centered-cubic “supracrystals-of cobalt nanocrystals. / Adv. Mater. 2003, / 15, 712-16. CrossRef
    14. Goubet, N.; Richardi, J.; Albouy, P.-A.; Pileni, M.-P. Which forces control supracrystal nucleation in organic media? / Adv. Funct. Mater. 2011, / 21, 2693-704. CrossRef
    15. Pileni, M.-P. Self-assembly of inorganic nanocrystals: Fabrication and collective intrinsic properties. / Acc. Chem. Res. 2007, / 40, 685-93. CrossRef
    16. Zaitseva, N.; Dai, Z. R.; Leon, F. R.; Krol, D. Optical properties of cdse superlattices. / J. Am. Chem. Soc. 2005, / 127, 10221-0226. CrossRef
    17. Talapin, D. V.; Shevchenko, E. V.; Murray, C. B.; Titov, A. V.; Král, P. Dipole-dipole interactions in nanoparticle superlattices. / Nano Lett. 2007, / 7, 1213-219. CrossRef
    18. Hanrath, T. Colloidal nanocrystal quantum dot assemblies as artificial solids. / J. Vac. Sci. Technol., A: Vacuum, Surfaces, and Films 2012, / 30, 030802. CrossRef
    19. Chen, J.; Dong, A.; Cai, J.; Ye, X.; Kang, Y.; Kikkawa, J. M.; Murray, C. B. Collective dipolar interactions in self-assembled magnetic binary nanocrystal superlattice membranes. / Nano Lett. 2010, / 10, 5103-108. CrossRef
    20. Courty, A.; Mermet, A.; Albouy, P. A.; Duval, E.; Pileni, M. P. Vibrational coherence of self-organized silver nanocrystals in f.c.c. supra-crystals. / Nat. Mater. 2005, / 4, 395-98. CrossRef
    21. Portalès, H.; Goubet, N.; Saviot, L.; Adichtchev, S.; Murray, D. B.; Mermet, A.; Duval, E.; Pileni, M. P. Probing atomic ordering and multiple twinning in metal nanocrystals through their vibrations. / Proc. Natl. Acad. Sci. USA 2008, / 105, 14784-4789. CrossRef
    22. Goubet, N.; Yan, C.; Polli, D.; Portalès, H.; Arfaoui, I.; Cerullo, G.; Pileni, M. P. Modulating physical properties of isolated and self-assembled nanocrystals through change in nanocrystallinity. / Nano Lett. 2013, / 13, 504-08. CrossRef
    23. Tang, Y.; Ouyang, M. Tailoring properties and functionalities of metal nanoparticles through crystallinity engineering. / Nat. Mater. 2007, / 6, 754-59. CrossRef
    24. Petrova, H.; Perez-Juste, J.; Zhang, Z.; Zhang, J.; Kosel, T.; Hartland, G. V. Crystal structure dependence of the elastic constants of gold nanorods. / J. Mater. Chem. 2006, / 16, 3957-963. CrossRef
    25. Gu, Q. F.; Krauss, G.; Steurer, W.; Gramm, F.; Cervellino, A. Unexpected high stiffness of Ag and Au nanoparticles. / Phys. Rev. Lett. 2008, / 100, 045502. CrossRef
    26. Saviot, L.; Murray, D. B. Acoustic vibrations of anisotropic nanoparticles. / Phys. Rev. B 2009, / 79, 214101. CrossRef
    27. Sauceda, H. E.; Mongin, D.; Maioli, P.; Crut, A.; Pellarin, M.; Fatti, N. D.; Vallée, F.; Garzón, I. L. Vibrational properties of metal nanoparticles: Atomistic simulation and comparison with time-resolved investigation. / J. Phys. Chem. C 2012, / 116, 25147-5156. CrossRef
    28. Crut, A.; Maioli, P.; Fatti, N. D.; Vallee, F. Anisotropy effects on the time-resolved spectroscopy of the acoustic vibrations of nanoobjects. / Phys. Chem. Chem. Phys. 2009, / 11, 5882-888. CrossRef
    29. Wiley, B.; Herricks, T.; Sun, Y.; Xia, Y. Polyol synthesis of silver nanoparticles: Use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. / Nano Lett. 2004, / 4, 1733-739. CrossRef
    30. Yang, Z.; Cavalier, M.; Walls, M.; Bonville, P.; Lisiecki, I.; Pileni, M. P. A Phase-solution annealing strategy to control the cobalt nanocrystal anisotropy: Structural and magnetic investigations. / J. Phys. Chem. C 2012, / 116, 15723-5730. CrossRef
    31. Goubet, N.; Portalès, H.; Yan, C.; Arfaoui, I.; Albouy, P.-A.; Mermet, A.; Pileni, M.-P. Simultaneous growths of gold colloidal crystals. / J. Am. Chem. Soc. 2012, / 134, 3714-719. CrossRef
    32. Portalès, H.; Goubet, N.; Sirotkin, S.; Duval, E.; Mermet, A.; Albouy, P. A.; Pileni, M. P. Crystallinity segregation upon selective self-assembling of gold colloidal single nanocrystals. / Nano Lett. 2012, / 12, 5292-298. CrossRef
    33. Portalès, H.; Goubet, N.; Saviot, L.; Yang, P.; Sirotkin, S.; Duval, E.; Mermet, A.; Pileni, M.-P. Crystallinity dependence of the plasmon resonant Raman scattering by anisotropic gold nanocrystals. / ACS Nano 2010, / 4, 3489-497. CrossRef
    34. Ghavanloo, E.; Fazelzadeh, S. A. Radial vibration of free anisotropic nanoparticles based on nonlocal continuum mechanics. / Nanotechnology 2013, / 24, 075702. CrossRef
    35. Wan, Y. F.; Goubet, N.; Albouy, P. A.; Pileni, M. P. Hierarchy in Au nanocrystal ordering in supracrystals: A potential approach to detect new physical properties. / Langmuir 2013, / 29, 7456-463. CrossRef
    36. Ino. S.; Ogawa, S. Multiply twinned particles at earlier stages of gold film formation on alkalihalide crystals. / J. Phys. Soc. Jpn. 1967, / 22, 1365-374. CrossRef
    37. Quan, Z.; Fang, J. Superlattices with non-spherical building blocks. / Nano Today 2010, / 5, 390-11. CrossRef
    38. Visscher, W. M.; Migliori, A.; Bell, T. M.; Reinert, R. A. On the normal modes of free vibration of inhomogeneous and anisotropic elastic objects. / J. Acoust. Soc. Am. 1991, / 90, 2154-162. CrossRef
  • 作者单位:Yanfen Wan (1) (2)
    Hervé Portalès (1) (2)
    Nicolas Goubet (1) (2)
    Alain Mermet (3)
    Marie-Paule Pileni (1) (2)

    1. UMR 7070, LM2N, Université Pierre et Marie Curie Paris 6, BP 52, 4 place Jussieu, 75005, Paris, France
    2. Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7070, LM2N, 4 place Jussieu, 75005, Paris, France
    3. Institut Lumière Matière, Unité Mixte de Recherche 5306 CNRS, Université Lyon 1, Bat. A. Kastler, 10 rue Ada Byron, 69622, Villeurbanne, France
文摘
A colloidal solution of 5 nm Au tetradecanethiol-coated nanoparticles is synthesized. After fast evaporation of one drop, ordered monolayers both composed of single domain and polycrystalline nanocrystals are obtained. On increasing the amount of materials and the evaporation time, nanocrystal films with irregular outlines are produced together with close-packed 3D superlattices exhibiting a truncated-tetrahedral shape. Using low-frequency micro-Raman scattering spectroscopy and electron microscopy the building block nanocrystallinity is characterized. Spontaneous nanocrystallinity segregation is revealed: the truncated-tetrahedral supracrystals are shown to mainly contain single domain building blocks while the supracrystalline films are composed of a mixture of single domain and polycrystalline nanocrystals. This observation points out the correlation between the nanocrystallinity segregation involved in the growth of the nanocrystal superlattices and their morphology.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700