用户名: 密码: 验证码:
Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling
详细信息    查看全文
  • 作者:Laura A Hug (1)
    Cindy J Castelle (1)
    Kelly C Wrighton (1)
    Brian C Thomas (1)
    Itai Sharon (1)
    Kyle R Frischkorn (1)
    Kenneth H Williams (2)
    Susannah G Tringe (3)
    Jillian F Banfield (1)
  • 关键词:Chloroflexi ; Metagenome ; GIF9 ; Anaerolinea ; Sediment ; Dehalococcoides ; Wood ; Ljungdahl ; Acetogenesis
  • 刊名:Microbiome
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:1
  • 期:1
  • 全文大小:629KB
  • 参考文献:1. Bowen JL, Ward BB, Morrison HG, Hobbie JE, Valiela I, Deegan LA, Sogin ML: Microbial community composition in sediments resists perturbation by nutrient enrichment. / ISME J 2011, 5:1540鈥?548. CrossRef
    2. Wrighton KC, Thomas BC, Sharon I, Miller CS, Castelle CJ, VerBerkmoes NC, Wilkins MJ, Hettich RL, Lipton MS, Williams KH, Long PE, Banfield JF: Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla. / Science 2012, 337:1661鈥?665. CrossRef
    3. Jorgensen SL, Hannisdal B, Lanz茅n A, Baumberger T, Flesland K, Fonseca R, Ovre氓s L, Steen IH, Thorseth IH, Pedersen RB, Schleper C: Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge. / Proc Natl Acad Sci U S A 2012, 109:E2846-E2855. CrossRef
    4. Hamdan LJ, Coffin RB, Sikaroodi M, Greinert J, Treude T, Gillevet PM: Ocean currents shape the microbiome of Arctic marine sediments. / ISME J 2012, 7:685鈥?96. CrossRef
    5. Wang Y, Sheng H-F, He Y, Wu J-Y, Jiang Y-X, Tam NF-Y, Zhou H-W: Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. / Appl Environ Microbiol 2012, 78:8264鈥?271. CrossRef
    6. Tang S, Gong Y, Edwards EA: Semi-automatic in silico gap closure enabled de novo assembly of two Dehalobacter genomes from metagenomic data. / PLoS One 2012, 7:e52038. CrossRef
    7. Iverson V, Morris RM, Frazar CD, Berthiaume CT, Morales RL, Armbrust EV: Untangling genomes from metagenomes: revealing an uncultured class of marine Euryarchaeota. / Science 2012, 335:587鈥?90. CrossRef
    8. Blazejak A, Schippers A: High abundance of JS-1- and Chloroflexi-related Bacteria in deeply buried marine sediments revealed by quantitative, real-time PCR. / FEMS Microbiol Ecol 2010, 72:198鈥?07. CrossRef
    9. Kirk Harris J, Gregory Caporaso J, Walker JJ, Spear JR, Gold NJ, Robertson CE, Hugenholtz P, Goodrich J, McDonald D, Knights D, Marshall P, Tufo H, Knight R, Pace NR: Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat. / ISME J 2012, 7:50鈥?0. CrossRef
    10. Kadnikov VV, Mardanov AV, Beletsky AV, Shubenkova OV, Pogodaeva TV, Zemskaya TI, Ravin NV, Skryabin KG: Microbial community structure in methane hydrate-bearing sediments of freshwater Lake Baikal. / FEMS Microbiol Ecol 2012, 79:348鈥?58. CrossRef
    11. Ikenaga M, Guevara R, Dean AL, Pisani C, Boyer JN: Changes in community structure of sediment bacteria along the Florida coastal everglades marsh-mangrove-seagrass salinity gradient. / Microb Ecol 2010, 59:284鈥?95. CrossRef
    12. Kube M, Beck A, Zinder SH, Kuhl H, Reinhardt R, Adrian L: Genome sequence of the chlorinated compound-respiring bacterium Dehalococcoides species strain CBDB1. / Nat Biotechnol 2005, 23:1269鈥?273. CrossRef
    13. McMurdie PJ, Behrens SF, M眉ller JA, G枚ke J, Ritalahti KM, Wagner R, Goltsman E, Lapidus A, Holmes S, L枚ffler FE, Spormann AM: Localized plasticity in the streamlined genomes of vinyl chloride respiring Dehalococcoides . / PLoS Genet 2009, 5:e1000714. CrossRef
    14. Seshadri R, Adrian L, Fouts DE, Eisen JA, Phillippy AM, Methe BA, Ward NL, Nelson WC, Deboy RT, Khouri HM, Kolonay JF, Dodson RJ, Daugherty SC, Brinkac LM, Sullivan SA, Madupu R, Nelson KE, Kang KH, Impraim M, Tran K, Robinson JM, Forberger HA, Fraser CM, Zinder SH, Heidelberg JF: Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes . / Science 2005, 307:105鈥?08. CrossRef
    15. L枚ffler FE, Yan J, Ritalahti KM, Adrian L, Edwards EA, Konstantinidis KT, M眉ller JA, Fullerton H, Zinder SH, Spormann AM: Dehalococcoides mccartyi gen. nov., sp. nov., obligate organohalide-respiring anaerobic bacteria, relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidetes classis nov., within the phylum Chloroflexi. / Int J Syst Evol Microbiol 2012, 63:625鈥?35. CrossRef
    16. Chang Y-J, Land M, Hauser L, Chertkov O, Del Rio TG, Nolan M, Copeland A, Tice H, Cheng J-F, Lucas S, Han C, Goodwin L, Pitluck S, Ivanova N, Ovchinikova G, Pati A, Chen A, Palaniappan K, Mavromatis K, Liolios K, Brettin T, Fiebig A, Rohde M, Abt B, G枚ker M, Detter JC, Woyke T, Bristow J, Eisen JA, Markowitz V, / et al.: Non-contiguous finished genome sequence and contextual data of the filamentous soil bacterium Ktedonobacter racemifer type strain (SOSP1鈥?1). / Stand Genomic Sci 2011, 5:97鈥?11. CrossRef
    17. Tang K-H, Barry K, Chertkov O, Dalin E, Han CS, Hauser LJ, Honchak BM, Karbach LE, Land ML, Lapidus A, Larimer FW, Mikhailova N, Pitluck S, Pierson BK, Blankenship RE: Complete genome sequence of the filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus . / BMC Genomics 2011, 12:334. CrossRef
    18. Yamada T, Sekiguchi Y, Hanada S, Imachi H, Ohashi A, Harada H, Kamagata Y: Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. / Int J Syst Evol Microbiol 2006, 56:1331鈥?340. CrossRef
    19. Wu D, Raymond J, Wu M, Chatterji S, Ren Q, Graham JE, Bryant DA, Robb F, Colman A, Tallon LJ, Badger JH, Madupu R, Ward NL, Eisen JA: Complete genome sequence of the aerobic CO-oxidizing thermophile Thermomicrobium roseum . / PLoS One 2009, 4:e4207. CrossRef
    20. Handley KM, Wrighton KC, Piceno YM, Andersen GL, Desantis TZ, Williams KH, Wilkins MJ, N鈥檊uessan AL, Peacock A, Bargar J, Long PE, Banfield JF: High-density PhyloChip profiling of stimulated aquifer microbial communities reveals a complex response to acetate amendment. / FEMS Microbiol Ecol 2012, 81:188鈥?04. CrossRef
    21. Williams KH, Long PE, Davis JA, Wilkins MJ, N鈥橤uessan AL, Steefel CI, Yang L, Newcomer D, Spane FA, Kerkhof LJ, McGuinness L, Dayvault R, Lovley DR: Acetate availability and its influence on sustainable bioremediation of Uranium-contaminated groundwater. / Geomicrobiol J 2011, 28:519鈥?39. CrossRef
    22. Campbell KM, Veeramani H, Ulrich K-U, Blue LY, Giammar DE, Bernier-Latmani R, Stubbs JE, Suvorova E, Yabusaki S, Lezama-Pacheco JS, Mehta A, Long PE, Bargar JR: Oxidative dissolution of biogenic Uraninite in groundwater at Old Rifle, CO. / Environ Sci Tech 2011, 45:8748鈥?754. CrossRef
    23. Peng Y, Leung HCM, Yiu SM, Chin FYL: IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. / Bioinformatics 2012, 28:1420鈥?428. CrossRef
    24. Dick GJ, Andersson AF, Baker BJ, Simmons SL, Thomas BC, Yelton AP, Banfield JF: Community-wide analysis of microbial genome sequence signatures. / Genome Biol 2009, 10:R85. CrossRef
    25. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ: Prodigal: prokaryotic gene recognition and translation initiation site identification. / BMC Bioinforma 2010, 11:119. CrossRef
    26. Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. / Genome Res 2008, 18:821鈥?29. CrossRef
    27. Sorek R, Zhu Y, Creevey CJ, Francino MP, Bork P, Rubin EM: Genome-wide experimental determination of barriers to horizontal gene transfer. / Science 2007, 318:1449鈥?452. CrossRef
    28. Wu M, Eisen JA: A simple, fast, and accurate method of phylogenomic inference. / Genome Biol 2008, 9:R151. CrossRef
    29. Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH: UniRef: comprehensive and non-redundant UniProt reference clusters. / Bioinformatics 2007, 23:1282鈥?288. CrossRef
    30. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M: KEGG: Kyoto encyclopedia of genes and genomes. / Nucleic Acids Res 1999, 27:29鈥?4. CrossRef
    31. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M: KEGG for integration and interpretation of large-scale molecular data sets. / Nucleic Acids Res 2012, 40:109鈥?14. CrossRef
    32. Mulder N, Apweiler R: InterPro and InterProScan: tools for protein sequence classification and comparison. / Methods Mol Biol 2007, 396:59鈥?0. CrossRef
    33. Schattner P, Brooks AN, Lowe TM: The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. / Nucleic Acids Res 2005, 33:686鈥?89. CrossRef
    34. Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. / Nucleic Acids Res 2004, 32:1792鈥?797. CrossRef
    35. Edgar RC: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. / BMC Bioinforma 2004, 5:113. CrossRef
    36. Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. / Syst Biol 2003, 52:696鈥?04. CrossRef
    37. Abascal F, Zardoya R, Posada D: ProtTest: selection of best-fit models of protein evolution. / Bioinformatics 2005, 21:2104鈥?105. CrossRef
    38. Darriba D, Taboada GL, Doallo R, Posada D: ProtTest 3: fast selection of best-fit models of protein evolution. / Bioinformatics 2011, 27:1164鈥?165. CrossRef
    39. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. / J Mol Biol 1990, 215:403鈥?10.
    40. Huson DH, Auch AF, Qi J, Schuster SC: MEGAN analysis of metagenomic data. / Genome Res 2007, 17:377鈥?86. CrossRef
    41. Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. / Genome Biol 2009, 10:R25. CrossRef
    42. Gutell RR, Larsen N, Woese CR: Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. / Microbiol Rev 1994, 58:10鈥?6.
    43. Jones AL: The future of taxonomy. / Adv Appl Microbiol 2012, 80:23鈥?5. CrossRef
    44. Teeling H, Gl枚ckner FO: Current opportunities and challenges in microbial metagenome analysis--a bioinformatic perspective. / Brief Bioinform 2012, 13:728鈥?42. CrossRef
    45. Miller CS, Baker BJ, Thomas BC, Singer SW, Banfield JF: EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data. / Genome Biol 2011, 12:R44. CrossRef
    46. Yabe S, Aiba Y, Sakai Y, Hazaka M, Yokota A: Thermosporothrix hazakensis gen. nov., sp. nov., isolated from compost, description of Thermosporotrichaceae fam. nov. within the class Ktedonobacteria Cavaletti et al. 2007 and emended description of the class Ktedonobacteria. / Int J Syst Evol Microbiol 2010, 60:1794鈥?801. CrossRef
    47. Wu D, Wu M, Halpern A, Rusch DB, Yooseph S, Frazier M, Venter JC, Eisen JA: Stalking the fourth domain in metagenomic data: searching for, discovering, and interpreting novel, deep branches in marker gene phylogenetic trees. / PLoS One 2011, 6:e18011. CrossRef
    48. Stark M, Berger SA, Stamatakis A, Von Mering C: MLTreeMap鈥揳ccurate Maximum Likelihood placement of environmental DNA sequences into taxonomic and functional reference phylogenies. / BMC Genomics 2010, 11:461. CrossRef
    49. Bendtsen JD, Nielsen H, Von Heijne G, Brunak S: Improved prediction of signal peptides: SignalP 3.0. / J Mol Biol 2004, 340:783鈥?95. CrossRef
    50. Petersen TN, Brunak S, Von Heijne G, Nielsen H: SignalP 4.0: discriminating signal peptides from transmembrane regions. / Nat Methods 2011, 8:785鈥?86. CrossRef
    51. Bendtsen JD, Nielsen H, Widdick D, Palmer T, Brunak S: Prediction of twin-arginine signal peptides. / BMC Bioinforma 2005, 6:167. CrossRef
    52. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Gl枚ckner FO: SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. / Nucleic Acids Res 2007, 35:7188鈥?196. CrossRef
    53. Giovannoni SJ, Rapp茅 MS, Vergin KL, Adair NL: 16S rRNA genes reveal stratified open ocean bacterioplankton populations related to the Green Non-Sulfur bacteria. / Proc Natl Acad Sci U S A 1996, 93:7979鈥?984. CrossRef
    54. Chandler D, Brockman F, Bailey T, Fredrickson J: Phylogenetic diversity of Archaea and Bacteria in a deep subsurface Paleosol. / Microb Ecol 1998, 36:37鈥?0. CrossRef
    55. Alfreider A, Vogt C, Babel W: Microbial diversity in an in situ reactor system treating monochlorobenzene contaminated groundwater as revealed by 16S ribosomal DNA analysis. / Syst Appl Microbiol 2002, 25:232鈥?40. CrossRef
    56. Jiang L, Zheng Y, Peng X, Zhou H, Zhang C, Xiao X, Wang F: Vertical distribution and diversity of sulfate-reducing prokaryotes in the Pearl River estuarine sediments, Southern China. / FEMS Microbiol Ecol 2009, 70:93鈥?06. CrossRef
    57. Ley RE, Harris JK, Wilcox J, Spear JR, Miller SR, Bebout BM, Maresca JA, Bryant DA, Sogin ML, Pace NR: Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. / Appl Environ Microbiol 2006, 72:3685鈥?695. CrossRef
    58. Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever M, Lauer A, Suzuki M, Takai K, Delwiche M, Colwell FS, Nealson KH, Horikoshi K, D鈥橦ondt S, J酶rgensen BB: Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. / Proc Natl Acad Sci U S A 2006, 103:2815鈥?820. CrossRef
    59. Takeuchi M, Komai T, Hanada S, Tamaki H, Tanabe S, Miyachi Y, Uchiyama M, Nakazawa T, Kimura K, Kamagata Y: Bacterial and archaeal 16S rRNA genes in late Pleistocene to Holocene muddy sediments from the Kanto Plain of Japan. / Geomicrobiol J 2009, 26:104鈥?18. CrossRef
    60. Harrison BK, Zhang H, Berelson W, Orphan VJ: Variations in archaeal and bacterial diversity associated with the sulfate-methane transition zone in continental margin sediments (Santa Barbara Basin, California). / Appl Environ Microbiol 2009, 75:1487鈥?499. CrossRef
    61. Teske A, Durbin A, Ziervogel K, Cox C, Arnosti C: Microbial community composition and function in permanently cold seawater and sediments from an arctic fjord of svalbard. / Appl Environ Microbiol 2011, 77:2008鈥?018. CrossRef
    62. Siddaramappa S, Challacombe JF, Delano SF, Green LD, Daligault H, Bruce D, Detter C, Tapia R, Han S, Goodwin L, Han J, Woyke T, Pitluck S, Pennacchio L, Nolan M, Land M, Chang Y-J, Kyrpides NC, Ovchinnikova G, Hauser L, Lapidus A, Yan J, Bowman KS, Da Costa MS, Rainey FA, Moe WM: Complete genome sequence of Dehalogenimonas lykanthroporepellens type strain (BL-DC-9 T ) and comparison to 鈥?/strong> Dehalococcoides 鈥?strains. / Stand Genomic Sci 2012, 6:251鈥?64. CrossRef
    63. Ahsanul Islam M, Edwards EA, Mahadevan R: Characterizing the metabolism of Dehalococcoides with a constraint-based model. / PLoS Comput Biol 2010, 6:e1000887. CrossRef
    64. Moparthi VK, H盲gerh盲ll C: The evolution of respiratory chain complex I from a smaller last common ancestor consisting of 11 protein subunits. / J Mol Evol 2011, 72:484鈥?97. CrossRef
    65. Marco-Urrea E, Paul S, Khodaverdi V, Seifert J, Von Bergen M, Kretzschmar U, Adrian L: Identification and characterization of a re-citrate synthase in Dehalococcoides strain CBDB1. / J Bacteriol 2011, 193:5171鈥?178. CrossRef
    66. Diesterhaft MD, Freese E: Role of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and malic enzyme during growth and sporulation of Bacillus subtilis . / J Biol Chem 1973, 248:6062鈥?070.
    67. Messerschmidt A, Niessen H, Abt D, Einsle O, Schink B, Kroneck PMH: Crystal structure of pyrogallol-phloroglucinol transhydroxylase, an Mo enzyme capable of intermolecular hydroxyl transfer between phenols. / Proc Natl Acad Sci U S A 2004, 101:11571鈥?1576. CrossRef
    68. Brune A, Schink B: Pyrogallol-to-phloroglucinol conversion and other hydroxyl-transfer reactions catalyzed by cell extracts of Pelobacter acidigallici . / J Bacteriol 1990, 172:1070鈥?076.
    69. Brune A, Schnell S, Schink B: Sequential transhydroxylations converting hydroxyhydroquinone to phloroglucinol in the strictly anaerobic, fermentative bacterium Pelobacter massiliensis . / Appl Environ Microbiol 1992, 58:1861鈥?868.
    70. Mai X, Adams MW: Characterization of a fourth type of 2-keto acid-oxidizing enzyme from a hyperthermophilic archaeon: 2-ketoglutarate ferredoxin oxidoreductase from Thermococcus litoralis . / J Bacteriol 1996, 178:5890鈥?896.
    71. Zhang Q, Iwasaki T, Wakagi T, Oshima T: 2-oxoacid:ferredoxin oxidoreductase from the thermoacidophilic archaeon, Sulfolobus sp. strain 7. / J Biochem 1996, 120:587鈥?99. CrossRef
    72. Fukuda E, Wakagi T: Substrate recognition by 2-oxoacid:ferredoxin oxidoreductase from Sulfolobus sp. strain 7. / Biochim Biophys Acta 2002, 1597:74鈥?0. CrossRef
    73. Ma K, Hutchins A, Sung SJ, Adams MW: Pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon, Pyrococcus furiosus , functions as a CoA-dependent pyruvate decarboxylase. / Proc Natl Acad Sci U S A 1997, 94:9608鈥?613. CrossRef
    74. Ragsdale SW, Pierce E: Acetogenesis and the Wood-Ljungdahl pathway of CO(2) fixation. / Biochim Biophys Acta 2008, 1784:1873鈥?898. CrossRef
    75. Mai X, Adams MW: Purification and characterization of two reversible and ADP-dependent acetyl coenzyme A synthetases from the hyperthermophilic archaeon Pyrococcus furiosus . / J Bacteriol 1996, 178:5897鈥?903.
    76. Castelle CJ, Hug LA, Wrighton KC, Thomas BC, Williams KH, Wu D, Tringe SG, Singer SW, Eisen JA, Banfield JF: Extraordinary phylogenetic diversity and metabolic versatility in aquifer sediment. / Nat Commun 2013. In press
    77. Vignais PM: Hydrogenases and H(+)-reduction in primary energy conservation. / Results Probl Cell Differ 2008, 45:223鈥?52. CrossRef
    78. Rosier C, Leys N, Henoumont C, Mergeay M, Wattiez R: Purification and characterization of the acetone carboxylase of Cupriavidus metallidurans strain CH34. / Appl Environ Microbiol 2012, 78:4516鈥?518. CrossRef
    79. Yamada T, Sekiguchi Y, Imachi H, Kamagata Y, Ohashi A, Harada H: Diversity, localization, and physiological properties of filamentous microbes belonging to Chloroflexi subphylum I in mesophilic and thermophilic methanogenic sludge granules. / Appl Environ Microbiol 2005, 71:7493鈥?503. CrossRef
    80. Sekiguchi Y: Anaerolinea thermophila gen. nov., sp. nov. and Caldilinea aerophila gen. nov., sp. nov., novel filamentous thermophiles that represent a previously uncultured lineage of the domain Bacteria at the subphylum level. / Int J Syst Evol Micr 2003, 53:1843鈥?851. CrossRef
    81. Lin X, Kennedy D, Fredrickson J, Bjornstad B, Konopka A: Vertical stratification of subsurface microbial community composition across geological formations at the Hanford Site. / Environ Microbiol 2012, 14:414鈥?25. CrossRef
    82. Singer E, Heidelberg JF, Dhillon A, Edwards KJ: Metagenomic insights into the dominant Fe(II) oxidizing Zetaproteobacteria from an iron mat at L艒麓ihi, Hawai麓l. / Front Microbiol 2013, 4:52. CrossRef
    83. Hinsley AP, Berks BC: Specificity of respiratory pathways involved in the reduction of sulfur compounds by Salmonella enterica . / Microbiology 2002, 148:3631鈥?638.
    84. Ralebits TK, Senior E, Van Verseveld HW: Microbial aspects of atrazine degradation in natural environments. / Biodegradation 2002, 13:11鈥?9. CrossRef
    85. Kindaichi T, Yuri S, Ozaki N, Ohashi A: Ecophysiological role and function of uncultured Chloroflexi in an anammox reactor. / Water Sci Technol 2012, 66:2556鈥?561. CrossRef
    86. Sutcliffe IC: Cell envelope architecture in the Chloroflexi: a shifting frontline in a phylogenetic turf war. / Environ Microbiol 2011, 13:279鈥?82. CrossRef
    87. White DC, Geyer R, Peacock AD, Hedrick DB, Koenigsberg SS, Sung Y, He J, L枚ffler FE: Phospholipid furan fatty acids and ubiquinone-8: lipid biomarkers that may protect Dehalococcoides strains from free radicals. / Appl Environ Microbiol 2005, 71:8426鈥?433. CrossRef
    88. Sorokin DY, L眉cker S, Vejmelkova D, Kostrikina NA, Kleerebezem R, Rijpstra WIC, Damst茅 JSS, Le Paslier D, Muyzer G, Wagner M, Van Loosdrecht MCM, Daims H: Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi. / ISME J 2012, 6:2245鈥?256. CrossRef
    89. Pati A, Labutti K, Pukall R, Nolan M, Glavina Del Rio T, Tice H, Cheng J-F, Lucas S, Chen F, Copeland A, Ivanova N, Mavromatis K, Mikhailova N, Pitluck S, Bruce D, Goodwin L, Land M, Hauser L, Chang Y-J, Jeffries CD, Chen A, Palaniappan K, Chain P, Brettin T, Sikorski J, Rohde M, G枚ker M, Bristow J, Eisen JA, Markowitz V, / et al.: Complete genome sequence of Sphaerobacter thermophilus type strain (S 6022). / Stand Genomic Sci 2010, 2:49鈥?6. CrossRef
    90. Kiss H, Cleland D, Lapidus A, Lucas S, Del Rio TG, Nolan M, Tice H, Han C, Goodwin L, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Ovchinnikova G, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang Y-J, Jeffries CD, Lu M, Brettin T, Detter JC, G枚ker M, Tindall BJ, Beck B, McDermott TR, Woyke T, Bristow J, / et al.: Complete genome sequence of 鈥?/strong> Thermobaculum terrenum 鈥?type strain (YNP1). / Stand Genomic Sci 2010, 3:153鈥?62. CrossRef
    91. Kiss H, Nett M, Domin N, Martin K, Maresca JA, Copeland A, Lapidus A, Lucas S, Berry KW, Glavina Del Rio T, Dalin E, Tice H, Pitluck S, Richardson P, Bruce D, Goodwin L, Han C, Detter JC, Schmutz J, Brettin T, Land M, Hauser L, Kyrpides NC, Ivanova N, G枚ker M, Woyke T, Klenk H-P, Bryant DA: Complete genome sequence of the filamentous gliding predatory bacterium Herpetosiphon aurantiacus type strain (114鈥?5(T)). / Stand Genomic Sci 2011, 5:356鈥?70. CrossRef
    92. Jarrell KF, McBride MJ: The surprisingly diverse ways that prokaryotes move. / Nat Rev Microbiol 2008, 6:466鈥?76. CrossRef
    93. Krasotkina J, Walters T, Maruya KA, Ragsdale SW: Characterization of the B12- and iron-sulfur-containing reductive dehalogenase from Desulfitobacterium chlororespirans . / J Biol Chem 2001, 276:40991鈥?0997. CrossRef
    94. Ni S, Fredrickson JK, Xun L: Purification and characterization of a novel 3-chlorobenzoate-reductive dehalogenase from the cytoplasmic membrane of Desulfomonile tiedjei DCB-1. / J Bacteriol 1995, 177:5135鈥?139.
    95. Adrian L, Rahnenf眉hrer J, Gobom J, H枚lscher T: Identification of a chlorobenzene reductive dehalogenase in Dehalococcoides sp. strain CBDB1. / Appl Environ Microbiol 2007, 73:7717鈥?724. CrossRef
    96. Van de Pas BA, Gerritse J, De Vos WM, Schraa G, Stams AJ: Two distinct enzyme systems are responsible for tetrachloroethene and chlorophenol reductive dehalogenation in Desulfitobacterium strain PCE1. / Arch Microbiol 2001, 176:165鈥?69. CrossRef
    97. Hesseler M, Bogdanovi膰 X, Hidalgo A, Berenguer J, Palm GJ, Hinrichs W, Bornscheuer UT: Cloning, functional expression, biochemical characterization, and structural analysis of a haloalkane dehalogenase from Plesiocystis pacifica SIR-1. / Appl Microbiol Biotechnol 2011, 91:1049鈥?060. CrossRef
    98. Chan WY, Wong M, Guthrie J, Savchenko AV, Yakunin AF, Pai EF, Edwards EA: Sequence- and activity-based screening of microbial genomes for novel dehalogenases. / Microb Biotechnol 2010, 3:107鈥?20. CrossRef
    99. Smidt H, De Vos WM: Anaerobic microbial dehalogenation. / Annu Rev Microbiol 2004, 58:43鈥?3. CrossRef
    100. Krzmarzick MJ, Crary BB, Harding JJ, Oyerinde OO, Leri AC, Myneni SCB, Novak PJ: Natural niche for organohalide-respiring Chloroflexi. / Appl Environ Microbiol 2012, 78:393鈥?01. CrossRef
  • 作者单位:Laura A Hug (1)
    Cindy J Castelle (1)
    Kelly C Wrighton (1)
    Brian C Thomas (1)
    Itai Sharon (1)
    Kyle R Frischkorn (1)
    Kenneth H Williams (2)
    Susannah G Tringe (3)
    Jillian F Banfield (1)

    1. Department of Earth and Planetary Science, UC Berkeley, Berkeley, CA, USA
    2. Geophysics Department, Earth Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, USA
    3. Metagenome Program, DOE Joint Genome Institute, Walnut Creek, CA, USA
  • ISSN:2049-2618
文摘
Background Sediments are massive reservoirs of carbon compounds and host a large fraction of microbial life. Microorganisms within terrestrial aquifer sediments control buried organic carbon turnover, degrade organic contaminants, and impact drinking water quality. Recent 16S rRNA gene profiling indicates that members of the bacterial phylum Chloroflexi are common in sediment. Only the role of the class Dehalococcoidia, which degrade halogenated solvents, is well understood. Genomic sampling is available for only six of the approximate 30 Chloroflexi classes, so little is known about the phylogenetic distribution of reductive dehalogenation or about the broader metabolic characteristics of Chloroflexi in sediment. Results We used metagenomics to directly evaluate the metabolic potential and diversity of Chloroflexi in aquifer sediments. We sampled genomic sequence from 86 Chloroflexi representing 15 distinct lineages, including members of eight classes previously characterized only by 16S rRNA sequences. Unlike in the Dehalococcoidia, genes for organohalide respiration are rare within the Chloroflexi genomes sampled here. Near-complete genomes were reconstructed for three Chloroflexi. One, a member of an unsequenced lineage in the Anaerolinea, is an aerobe with the potential for respiring diverse carbon compounds. The others represent two genomically unsampled classes sibling to the Dehalococcoidia, and are anaerobes likely involved in sugar and plant-derived-compound degradation to acetate. Both fix CO2 via the Wood-Ljungdahl pathway, a pathway not previously documented in Chloroflexi. The genomes each encode unique traits apparently acquired from Archaea, including mechanisms of motility and ATP synthesis. Conclusions Chloroflexi in the aquifer sediments are abundant and highly diverse. Genomic analyses provide new evolutionary boundaries for obligate organohalide respiration. We expand the potential roles of Chloroflexi in sediment carbon cycling beyond organohalide respiration to include respiration of sugars, fermentation, CO2 fixation, and acetogenesis with ATP formation by substrate-level phosphorylation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700