用户名: 密码: 验证码:
Tracking task-space synchronization of networked Lagrangian systems with switching topology
详细信息    查看全文
  • 作者:Liyun Zhao ; Jinchen Ji ; Jun Liu ; Quanjun Wu ; Jin Zhou
  • 关键词:Tracking synchronization ; Lagrangian systems ; Switching topologies ; Task space
  • 刊名:Nonlinear Dynamics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:83
  • 期:3
  • 页码:1673-1685
  • 全文大小:938 KB
  • 参考文献:1.Abhijit, D., Lewis, F.L.: Distributed adaptive control for synchronization of unknown nonlinear networked systems. Automatica 46, 2014–2021 (2010)MATH CrossRef
    2.Nuño, E., Ortega, R., Basañez, L., David, H.: Synchronization of networks of nonidentical Euler–Lagrange systems with uncertain parameters and communication delays. IEEE Trans. Autom. Control 56, 935–940 (2011)CrossRef
    3.Spong, M.W., Chopra, N.: Synchronization of networked lagrangian systems. Lecture notes in control and information sciences. In: Lagrangian and Hamiltonian Methods for Nonlinear Control, vol. 366, pp. 47–59. Springer, Berlin (2007)
    4.Ren, W.: Distributed leaderless consensus algorithms for networked Lagrange systems. Int. J. Control 82, 2137–2149 (2009)MATH CrossRef
    5.Wu, X.J., Zhou, J., Xiang, L., Lin, C.N., Zhang, H.: Impulsive synchronization motion in networked open-loop multibody systems. Multibody Syst. Dyn. 30, 37–52 (2013)MATH MathSciNet CrossRef
    6.Wang, H.L.: Passivity based synchronization for networked robotic systems with uncertain kinematics and dynamics. Automatica 49, 755–761 (2013)MATH CrossRef
    7.Dong, W.J.: On consensus algorithms of multiple uncertain mechanical systems with a reference trajectory. Automatica 47, 2023–2028 (2011)MATH CrossRef
    8.Zhou, J., Wu, X.J., Liu, Z.R.: Distributed coordinated adaptive tracking in networked redundant robotic systems with a dynamic leader. Sci. China Technol. Sci. 57, 905–913 (2014)CrossRef
    9.Liu, Y., Min, H.B., Wang, S.C., Liu, Z.G., Liao, S.Y.: Distributed adaptive consensus for multiple mechanical systems with switching topologies and time-varying delay. Syst. Control Lett. 64, 119–126 (2014)MathSciNet CrossRef
    10.Ren, W.: Consensus strategies for cooperative control of vehicle formations. IET Control Theory Appl. 2, 505–512 (2007)CrossRef
    11.Mei, J., Ren, W., Ma, G.F.: Distributed coordinated tracking with a dynamic leader for multiple Euler–Lagrange systems. IEEE Trans. Autom. Control 56, 1415–1421 (2011)MathSciNet CrossRef
    12.Sun, D., Zhao, X., Feng, G.: A model-free cross-coupled control for position synchronization of multi-axis motions: theory and experiments. IEEE Trans. Control Syst. Technol. 15, 306–314 (2007)CrossRef
    13.Liu, Y.C., Chopra, N.: Controlled synchronization of heterogeneous robotic manipulators in the task space. IEEE Trans. Robot. 1, 268–275 (2012)CrossRef
    14.Cheah, C.C., Liu, C., Slotine, J.J.E.: Adaptive tracking control for robots with unknown kinematic and dynamic properties. Int. J. Robot. Res. 3, 283–296 (2006)CrossRef
    15.Cheah, C.C., Liu, C., Slotine, J.J.E.: Adaptive Jacobian tracking control of robots with uncertainties in kinematic, dynamic and actuator models. IEEE Trans. Robot. Autom. 6, 1024–1029 (2006)MathSciNet
    16.Ni, W., Cheng, D.Z.: Leader-following consensus of multi-agent systems under fixed and switching topologies. Syst. Control Lett. 59, 209–217 (2010)MATH MathSciNet CrossRef
    17.Su, Y., Huang, J.: Stability of a class of linear switching systems with applications to two consensus problems. IEEE Trans. Autom. Control 57, 1420–1430 (2012)MathSciNet CrossRef
    18.Zhang, H., Zhou, J.: Distributed impulsive consensus for second-order multi-agent systems with input delays. IET Control Theory Appl. 7, 1978–1983 (2013)MathSciNet CrossRef
    19.Qin, J.H., Gao, H.J., Zheng, W.X.: Second-order consensus for multi-agent systems with switching topology and communication delay. Syst. Control Lett. 60, 390–397 (2011)MATH MathSciNet CrossRef
    20.Liu, Y.R., Wang, Z.D., Liang, J.L., Liu, X.H.: Synchronization and state estimation for discrete-time complex networks with distributed delays. IEEE Trans. Syst. Man Cybern. B 38, 1314–1325 (2008)CrossRef
    21.Godsil, C., Royle, G.: Algebraic Graph Theory. Springer, NewYork (2001)MATH CrossRef
    22.Zhang, Y., Liu, X.Z., Xue, M.S.: Stability of switched systems with time delay. Nonlinear Anal Hybrid Syst. 1, 44–58 (2007)MATH MathSciNet CrossRef
    23.Li, C.Y., Qu, Z.H.: Distributed finite-time consensus of nonlinear systems under switching topologies. Automatica 50, 1626–1631 (2014)MATH MathSciNet CrossRef
    24.Yu, W.Y., Cao, J.D., Yu, W.W., Lu, J.Q.: Leader-following consensus of non-linear multi-agent systems with jointly connected topology. IET Control Theory Appl. 8, 432–440 (2014)MathSciNet CrossRef
    25.Lin, P., Qin, K., Zhao, H., Sun, M.: A new approach to average consensus problems with multiple delays and jointly-connected topologies. J. Frankl. Inst. 349, 293–304 (2012)MATH MathSciNet CrossRef
    26.Lewis, F.L., Jagannathan, S., Yesildirek, A.: Neural Network Control of Robot Manipulators and Non-linear Systems. Taylor & Francis, New York (1998)
    27.Kelly, R., Santibanez, V., Loria, A.: Control of Robot Manipulators in Joint Space. Springer, London (2005)
    28.Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs (1991)MATH
    29.Chung, S.J., Slotine, J.J.E.: Cooperative robot control and concurrent synchronization of Lagrangian systems. IEEE Trans. Robot. 25, 686–700 (2009)CrossRef
    30.Zhao, L.Y., Zhou, J., Wu, Q.J.: Sampled-data synchronisation of coupled harmonic oscillators with communication and input delays subject to controller failure. Int. J. Syst. Sci. (2015). doi:10.​1080/​00207721.​2015.​1067336
    31.Wu, Z.Y., Fu, X.C.: Complex projective synchronization in drive–response networks coupled with complex-variable chaotic systems. Nonlinear Dyn. 72, 9–15 (2013)MATH MathSciNet CrossRef
    32.Fang, Y., Yan, K., Li, K.L.: Impulsive synchronization of a class of chaotic systems. Syst. Sci. Control Eng. 2, 55–60 (2014)CrossRef
    33.Wang, B.X., Jian, J.G., Yu, H.: Adaptive synchronization of fractional-order memristor-based Chua’s system. Syst. Sci. Control Eng. 2, 291–296 (2014)MATH CrossRef
    34.Ding, D.R., Wang, Z.D., Shen, B., Dong, H.L.: Envelope-constrained \(H_\infty \) filtering with fading measurements and randomly occurring nonlinearities: The finite horizon case. Automatica 55, 37–45 (2015)
    35.Ding, D.R., Wang, Z.D., Lam, J., Shen, B.: Finite-Horizon \(H_\infty \) control for discrete time-varying systems with randomly occurring nonlinearities and fading measurements. IEEE Trans. Autom. Control. doi:10.​1109/​TAC.​2014.​2380671
  • 作者单位:Liyun Zhao (1) (2)
    Jinchen Ji (3)
    Jun Liu (1) (4)
    Quanjun Wu (5)
    Jin Zhou (1)

    1. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai, 200072, China
    2. School of Mathematics, Physics and Biological Engineering, Inner Mongolia University of Science and Technology, Baotou, 014010, China
    3. Faculty of Engineering and IT, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW, 2007, Australia
    4. Department of Mathematics, Jining University, Qufu, 273155, Shandong, China
    5. School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 200090, China
  • 刊物类别:Engineering
  • 刊物主题:Vibration, Dynamical Systems and Control
    Mechanics
    Mechanical Engineering
    Automotive and Aerospace Engineering and Traffic
  • 出版者:Springer Netherlands
  • ISSN:1573-269X
文摘
This paper investigates the tracking synchronization problem of networked Lagrangian systems with directed switching topologies in task space. A tracking synchronization protocol is developed for the systems with uncertainties in kinematic, dynamic and actuator models. The estimated parameters are updated by using three adaptive control laws to account for the uncertainties. It is found that the positions and velocities of networked Lagrangian systems can track the desired position and velocity in task space, under the condition that the graph topologies are jointly connected and balanced pointwise in time. Specifically, if the dynamic, kinematic and actuator parameters are certain, the tracking synchronization error will be exponentially convergent during a periodically intermittent interaction. Numerical examples and simulations are given to verify the theoretical analysis and demonstrate the effectiveness of the proposed control approach.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700