用户名: 密码: 验证码:
A novel bioinformatics pipeline to discover genes related to arbuscular mycorrhizal symbiosis based on their evolutionary conservation pattern among higher plants
详细信息    查看全文
  • 作者:Patrick Favre (1) (3) (5)
    Laure Bapaume (1)
    Eligio Bossolini (1) (6)
    Mauro Delorenzi (2) (4) (5)
    Laurent Falquet (1) (3)
    Didier Reinhardt (1)

    1. Department of Biology
    ; University of Fribourg ; Fribourg ; Switzerland
    3. Swiss Institute of Bioinformatics
    ; Fribourg ; Switzerland
    5. SIB Swiss Institute of Bioinformatics
    ; Lausanne ; Switzerland
    6. Current address
    ; Crop Genetics ; Bayer CropScience NV ; Ghent ; Belgium
    2. Ludwig Center for Cancer Research
    ; University of Lausanne ; Lausanne ; Switzerland
    4. Oncology Department
    ; University of Lausanne ; Lausanne ; Switzerland
  • 关键词:Arbuscular mycorrhiza ; Symbiosis ; Symbiosis signaling ; Common SYM gene ; Conservation ; Gene clustering ; Proteome analysis ; Bioinformatics
  • 刊名:BMC Plant Biology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:14
  • 期:1
  • 全文大小:2,627 KB
  • 参考文献:1. Smith, SE, Read, DJ (2008) Mycorrhizal Symbiosis. Academic, New York
    2. Wang, B, Qiu, YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16: pp. 299-363 CrossRef
    3. Brundrett, MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154: pp. 275-304 CrossRef
    4. Gutjahr, C, Parniske, M (2013) Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu Rev Cell Dev Biol 29: pp. 593-617 CrossRef
    5. Delaux, PM, Sejalon-Delmas, N, B茅card, G, An茅, JM (2013) Evolution of the plant-microbe symbiotic 鈥榯oolkit鈥? Trends Plant Sci 18: pp. 298-304 16/j.tplants.2013.01.008" target="_blank" title="It opens in new window">CrossRef
    6. Wang, B, Yeun, LH, Xue, JY, Liu, Y, Ane, JM, Qiu, YL (2010) Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants. New Phytol 186: pp. 514-525 CrossRef
    7. Redecker, D, Kodner, R, Graham, LE (2000) Glomalean fungi from the Ordovician. Science 289: pp. 1920-1921 CrossRef
    8. Kistner, C, Parniske, M (2002) Evolution of signal transduction in intracellular symbiosis. Trends Plant Sci 7: pp. 511-518 16/S1360-1385(02)02356-7" target="_blank" title="It opens in new window">CrossRef
    9. Sprent, JI, James, EK (2007) Legume evolution: Where do nodules and mycorrhizas fit in?. Plant Physiol 144: pp. 575-581 CrossRef
    10. Sprent, JI (2008) 60聽Ma of legume nodulation. What鈥檚 new? What鈥檚 changing?. J Exp Bot 59: pp. 1081-1084 CrossRef
    11. Hocher, V, Alloisio, N, Auguy, F, Fournier, P, Doumas, P, Pujic, P, Gherbi, H, Queiroux, C, Silva, C, Wincker, P, Normand, P, Bogusz, D (2011) Transcriptomics of actinorhizal symbioses reveals homologs of the whole common symbiotic signaling cascade. Plant Physiol 156: pp. 700-711 CrossRef
    12. Svistoonoff, S, Benabdoun, FM, Nambiar-Veetil, M, Imanishi, L, Vaissayre, V, Cesari, S, Diagne, N, Hocher, V, Billy, F, Bonneau, J, Wall, L, Ykhlef, N, Rosenberg, C, Bogusz, D, Franche, C, Gherbi, H (2013) The independent acquisition of plant root nitrogen-fixing symbiosis in fabids recruited the same genetic pathway for nodule organogenesis. Plos One 8: pp. e64515 CrossRef
    13. Oldroyd, GED (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11: pp. 252-263 CrossRef
    14. Oldroyd, GED, Downie, JA (2006) Nuclear calcium changes at the core of symbiosis signalling. Curr Opin Plant Biol 9: pp. 351-357 16/j.pbi.2006.05.003" target="_blank" title="It opens in new window">CrossRef
    15. Singh, S, Parniske, M (2012) Activation of calcium- and calmodulin-dependent protein kinase (CCaMK), the central regulator of plant root endosymbiosis. Curr Opin Plant Biol 15: pp. 444-453 16/j.pbi.2012.04.002" target="_blank" title="It opens in new window">CrossRef
    16. Feddermann, N, Duvvuru Muni, RR, Zeier, T, Stuurman, J, Ercolin, F, Schorderet, M, Reinhardt, D (2010) The PAM1 gene of petunia, required for intracellular accommodation and morphogenesis of arbuscular mycorrhizal fungi, encodes a homologue of VAPYRIN. Plant J 64: pp. 470-481 CrossRef
    17. Pumplin, N, Mondo, SJ, Topp, S, Starker, CG, Gantt, JS, Harrison, MJ (2010) Medicago truncatula Vapyrin is a novel protein required for arbuscular mycorrhizal symbiosis. Plant J 61: pp. 482-494 CrossRef
    18. Feddermann, N, Reinhardt, D (2011) Conserved residues in the ankyrin domain of VAPYRIN indicate potential protein-protein interaction surfaces. Plant Signaling Behav 6: pp. 680-684 161/psb.6.5.14972" target="_blank" title="It opens in new window">CrossRef
    19. Breuillin, F, Schramm, J, Hajirezaei, M, Ahkami, A, Favre, P, Druege, U, Hause, B, Bucher, M, Kretzschmar, T, Bossolini, E, Kuhlemeier, C, Martinoia, E, Franken, P, Scholz, U, Reinhardt, D, Bucher, M, Kretzschmar, T, Bossolini, E, Kuhlemeier, C, Martinoia, E, Franken, P, Scholz, U, Reinhardt, D (2010) Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant J 64: pp. 1002-1017 CrossRef
    20. Rich, MK, Schorderet, M, Reinhardt, D (2014) The role of the cell wall compartment in mutualistic symbioses of plants. Front Plant Sci 5: pp. 238 CrossRef
    21. Gobbato, E, Marsh, JF, Vernie, T, Wang, E, Maillet, F, Kim, J, Miller, JB, Sun, J, Bano, SA, Ratet, P, Mysore, KS, D茅nari茅, J, Schultze, M, Oldroyd, GE (2012) A GRAS-type transcription factor with a specific function in mycorrhizal signaling. Curr Biol 22: pp. 2236-2241 16/j.cub.2012.09.044" target="_blank" title="It opens in new window">CrossRef
    22. Zhang, Q, Blaylock, LA, Harrison, MJ (2010) Two Medicago truncatula half-ABC transporters are essential for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Cell 22: pp. 1483-1497 CrossRef
    23. Harrison, MJ, Dewbre, GR, Liu, JY (2002) A phosphate transporter from Medicago truncatula involved in the acquisiton of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14: pp. 2413-2429 CrossRef
    24. Javot, H, Penmetsa, RV, Terzaghi, N, Cook, DR, Harrison, MJ (2007) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 104: pp. 1720-1725 CrossRef
    25. Schreiber, F, Sonnhammer, ELL (2013) Hieranoid: Hierarchical Orthology Inference. J Mol Biol 425: pp. 2072-2081 16/j.jmb.2013.02.018" target="_blank" title="It opens in new window">CrossRef
    26. Murray, JD, Duvvuru Muni, R, Torres-Jerez, I, Tang, Y, Allen, S, Andriankaja, M, Li, G, Laxmi, A, Cheng, X, Wen, J, Vaughan, D, Schultze, M, Sun, J, Charpentier, M, Oldroyd, G, Tadege, M, Ratet, P, Mysore, KS, Chen, R, Udvardi, MK (2011) Vapyrin, a gene essential for intracellular progression of arbuscular mycorrhizal symbiosis, is also essential for infection by rhizobia in the nodule symbiosis of Medicago truncatula. Plant J 65: pp. 244-252 CrossRef
    27. Apweiler, R, Bateman, A, Martin, MJ, O鈥橠onovan, C, Magrane, M, Alam-Faruque, Y, Alpi, E, Antunes, R, Arganiska, J, Casanova, EB, Bely, B, Bingley, M, Bonilla, C, Britto, R, Bursteinas, B, Mun Chan, W, Chavali, G, Cibrian-Uhalte, E, Silva, A, Giorgi, M, Fazzini, F, Gane, P, Castro, LG, Garmiri, P, Hatton-Ellis, E, Hieta, R, Huntley, R, Legge, D, Liu, W, Luo, J (2014) Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res 42: pp. D191-D198 CrossRef
    28. Groth, M, Takeda, N, Perry, J, Uchida, H, Draexl, S, Brachmann, A, Sato, S, Tabata, S, Kawaguchi, M, Wang, TL, Parniske, M (2010) NENA, a Lotus japonicus homolog of Sec13, is required for rhizodermal infection by arbuscular mycorrhiza fungi and rhizobia but dispensable for cortical endosymbiotic development. Plant Cell 22: pp. 2509-2526 CrossRef
    29. Kanamori, N, Madsen, LH, Radutoiu, S, Frantescu, M, Quistgaard, EMH, Miwa, H, Downie, JA, James, EK, Felle, HH, Haaning, LL, Jensen, TH, Sato, S, Nakamura, Y, Tabata, S, Sandal, N, Stougaard, J (2006) A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proc Natl Acad Sci U S A 103: pp. 359-364 CrossRef
    30. Saito, K, Yoshikawa, M, Yano, K, Miwa, H, Uchida, H, Asamizu, E, Sato, S, Tabata, S, Imaizumi-Anraku, H, Umehara, Y, Kouchi, H, Murooka, Y, Szczyglowski, K, Downie, JA, Parniske, M, Hayashi, M, Kawaguchi, M (2007) NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus. Plant Cell 19: pp. 610-624 CrossRef
    31. Fiorilli, V, Catoni, M, Miozzi, L, Novero, M, Accotto, GP, Lanfranco, L (2009) Global and cell-type gene expression profiles in tomato plants colonized by an arbuscular mycorrhizal fungus. New Phytol 184: pp. 975-987 CrossRef
    32. Guether, M, Balestrini, R, Hannah, M, He, J, Udvardi, M, Bonfante, P (2009) Genome-wide reprogramming of regulatory networks, cell wall and membrane biogenesis during arbuscular-mycorrhizal symbiosis in Lotus japonicus. New Phytol 182: pp. 200-212 CrossRef
    33. G眉imil, S, Chang, HS, Zhu, T, Sesma, A, Osbourn, A, Roux, C, Ionnidis, V, Oakeley, EJ, Docquier, M, Descombes, P, Briggs, SP, Paszkowski, U (2005) Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc Natl Acad Sci U S A 102: pp. 8066-8070 CrossRef
    34. Hohnjec, N, Vieweg, ME, Puhler, A, Becker, A, K眉ster, H (2005) Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. Plant Physiol 137: pp. 1283-1301 CrossRef
    35. Liu, JY, Blaylock, LA, Endre, G, Cho, J, Town, CD, VandenBosch, KA, Harrison, MJ (2003) Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis. Plant Cell 15: pp. 2106-2123 CrossRef
    36. L茅vy, J, Bres, C, Geurts, R, Chalhoub, B, Kulikova, O, Duc, G, Journet, EP, An茅, JM, Lauber, E, Bisseling, T, D茅nari茅, J, Rosenberg, C, Debell茅, F (2004) A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303: pp. 1361-1364 CrossRef
    37. Mitra, RM, Gleason, CA, Edwards, A, Hadfield, J, Downie, JA, Oldroyd, GED, Long, SR (2004) A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: Gene identification by transcript-based cloning. Proc Natl Acad Sci U S A 101: pp. 4701-4705 CrossRef
    38. Nagy, F, Karandashov, V, Chague, W, Kalinkevich, K, Tamasloukht, M, Xu, GH, Jakobsen, I, Levy, AA, Amrhein, N, Bucher, M (2005) The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J 42: pp. 236-250 CrossRef
    39. Rausch, C, Daram, P, Brunner, S, Jansa, J, Laloi, M, Leggewie, G, Amrhein, N, Bucher, M (2001) A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414: pp. 462-466 CrossRef
    40. Wegm眉ller, S, Svistoonoff, S, Reinhardt, D, Stuurman, J, Amrhein, N, Bucher, M (2008) A transgenic dTph1 insertional mutagenesis system for forward genetics in mycorrhizal phosphate transport of Petunia. Plant J 54: pp. 1115-1127 CrossRef
    41. Guether, M, Neuhauser, B, Balestrini, R, Dynowski, M, Ludewig, U, Bonfante, P (2009) A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiol 150: pp. 73-83 CrossRef
    42. Katoh, K, Standley, DM (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol 30: pp. 772-780 CrossRef
    43. Shaikhali, J, Noren, L, Barajas-Lopez, JD, Srivastava, V, Konig, J, Sauer, UH, Wingsle, G, Dietz, KJ, Strand, A (2012) Redox-mediated mechanisms regulate DNA binding activity of the G-group of basic region leucine zipper (bZIP) transcription factors in Arabidopsis. J Biol Chem 287: pp. 27510-27525 CrossRef
    44. Vickers, CE, Xue, GP, Gresshoff, PM (2006) A novel cis-acting element, ESP, contributes to high-level endosperm-specific expression in an oat globulin promoter. Plant Mol Biol 62: pp. 195-214 CrossRef
    45. Zhou, P, Yang, F, Yu, JJ, Ao, GM, Zhao, Q (2010) Several cis-elements including a palindrome involved in pollen-specific activity of SBgLR promoter. Plant Cell Rep 29: pp. 503-511 CrossRef
    46. Chen, AQ, Gu, MA, Sun, SB, Zhu, LL, Hong, SA, Xu, GH (2012) Identification of two conserved cis-acting elements, MYCS and P1BS, involved in the regulation of mycorrhiza-activated phosphate transporters in eudicot species. New Phytol 189: pp. 1157-1169 CrossRef
    47. Lota, F, Wegm眉ller, S, Buer, B, Sato, S, Br盲utigam, A, Hanf, B, Bucher, M (2013) The cis-acting CTTC-P1BS module is indicative for gene function of LjVTI12, a Qb-SNARE protein gene that is required for arbuscule formation in Lotus japonicus. Plant J 74: pp. 280-293 CrossRef
    48. Radutoiu, S, Madsen, LH, Madsen, EB, Felle, HH, Umehara, Y, Gronlund, M, Sato, S, Nakamura, Y, Tabata, S, Sandal, N, Stougaard, J (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425: pp. 585-592 CrossRef
    49. Markham, JE, Lynch, DV, Napier, JA, Dunn, TM, Cahoon, EB (2013) Plant sphingolipids: function follows form. Curr Opin Plant Biol 16: pp. 350-357 16/j.pbi.2013.02.009" target="_blank" title="It opens in new window">CrossRef
    50. Kutchan, TM (1996) Heterologous expression of alkaloid biosynthetic genes - A review. Gene 179: pp. 73-81 16/S0378-1119(96)00426-X" target="_blank" title="It opens in new window">CrossRef
    51. Govindarajulu, M, Pfeffer, PE, Jin, HR, Abubaker, J, Douds, DD, Allen, JW, B眉cking, H, Lammers, PJ, Shachar-Hill, Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435: pp. 819-823 CrossRef
    52. Tian, CJ, Kasiborski, B, Koul, R, Lammers, PJ, B眉cking, H, Shachar-Hill, Y (2010) Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: Gene characterization and the coordination of expression with nitrogen flux. Plant Physiol 153: pp. 1175-1187 CrossRef
    53. Miyawaki, K, Tabata, R, Sawa, S (2013) Evolutionarily conserved CLE peptide signaling in plant development, symbiosis, and parasitism. Curr Opin Plant Biol 16: pp. 598-606 16/j.pbi.2013.08.008" target="_blank" title="It opens in new window">CrossRef
    54. Chen, CY, An茅, JM, Zhu, HY (2008) OsIPD3, an ortholog of the Medicago truncatula DMI3 interacting protein IPD3, is required for mycorrhizal symbiosis in rice. New Phytol 180: pp. 311-315 CrossRef
    55. Horvath, B, Yeun, LH, Domonkos, A, Halasz, G, Gobbato, E, Ayaydin, F, Miro, K, Hirsch, S, Sun, JH, Tadege, M, Ratet, P, Mysore, KS, An茅, JM, Oldroyd, GE, Kal贸, P (2011) Medicago truncatula IPD3 Is a member of the common symbiotic signaling pathway required for rhizobial and mycorrhizal symbioses. Mol Plant-Microbe Interact 24: pp. 1345-1358 CrossRef
    56. Yano, K, Yoshida, S, Muller, J, Singh, S, Banba, M, Vickers, K, Markmann, K, White, C, Schuller, B, Sato, S, Asamizu, E, Tabata, S, Murooka, Y, Perry, J, Wang, TL, Kawaguchi, M, Imaizumi-Anraku, H, Hayashi, M, Parniske, M (2008) CYCLOPS, a mediator of symbiotic intracellular accommodation. Proc Natl Acad Sci U S A 105: pp. 20540-20545 CrossRef
    57. Scheller, HV, Ulvskov, P (2010) Hemicelluloses. Annu Rev Plant Biol 61: pp. 263-289 CrossRef
    58. Stein, JC, Howlett, B, Boyes, DC, Nasrallah, ME, Nasrallah, JB (1991) Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea. Proc Natl Acad Sci U S A 88: pp. 8816-8820 16" target="_blank" title="It opens in new window">CrossRef
    59. Nasrallah, JB, Nasrallah, ME (2014) S-locus receptor kinase signalling. Biochem Soc Trans 42: pp. 313-319 CrossRef
    60. Walker, JC, Zhang, R (1990) Relationship of a putative receptor protein kinase from maize to the S-locus glycoproteins of Brassica. Nature 345: pp. 743-746 CrossRef
    61. Hernandez-Garcia, CM, Finer, JJ (2014) Identification and validation of promoters and cis-acting regulatory elements. Plant Sci 217: pp. 109-119 16/j.plantsci.2013.12.007" target="_blank" title="It opens in new window">CrossRef
    62. Kim, MJ, Ruzicka, D, Shin, R, Schachtman, DP (2012) The Arabidopsis AP2/ERF transcription factor RAP2.11 modulates plant response to low-potassium conditions. Mol Plant 5: pp. 1042-1057 CrossRef
    63. Ramkumar, G, Madhav, MS, Biswal, AK, Rama Devi, SJS, Sakthivel, K, Mohan, MK, Umakanth, B, Mangrauthia, SK, Sundaram, RM, Viraktamath, BC (2014) Genome-wide identification and characterization of transcription factor binding motifs of NBS-LRR genes in rice and Arabidopsis. J Genomes Exomes 3: pp. 7-15
    64. Cheng, MC, Liao, PM, Kuo, WW, Lin, TP (2013) The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol 162: pp. 1566-1582 CrossRef
    65. Hao, DY, Yamasaki, K, Sarai, A, Ohme-Takagi, M (2002) Determinants in the sequence specific binding of two plant transcription factors, CBF1 and NtERF2, to the DRE and GCC motifs. Biochemistry 41: pp. 4202-4208 CrossRef
    66. Hu, FY, Wang, D, Zhao, XQ, Zhang, T, Sun, HX, Zhu, LH, Zhang, F, Li, LJ, Li, QO, Tao, DY, Fu, B, Li, Z (2011) Identification of rhizome-specific genes by genome-wide differential expression analysis in Oryza longistaminata. BMC Plant Biol 11: pp. 18 CrossRef
    67. Lu, X, Jiang, WM, Zhang, L, Zhang, F, Zhang, FY, Shen, Q, Wang, GF, Tang, KX (2013) AaERF1 Positively Regulates the Resistance to Botrytis cinerea in Artemisia annua. Plos One 8: pp. e57657 CrossRef
    68. Pirrello, J, Prasad, BCN, Zhang, WS, Chen, KS, Mila, I, Zouine, M, Latche, A, Pech, JC, Ohme-Takagi, M, Regad, F, Bouzayen, M (2012) Functional analysis and binding affinity of tomato ethylene response factors provide insight on the molecular bases of plant differential responses to ethylene. BMC Plant Biol 12: pp. 190 CrossRef
    69. Shoji, T, Mishima, M, Hashimoto, T (2013) Divergent DNA-Binding Specificities of a Group of ETHYLENE RESPONSE FACTOR Transcription Factors Involved in Plant Defense. Plant Physiol 162: pp. 977-990 CrossRef
    70. Zhou, JM, Tang, XY, Martin, GB (1997) The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J 16: pp. 3207-3218 16.11.3207" target="_blank" title="It opens in new window">CrossRef
    71. Franken, P, Gn盲dinger, F (1994) Analysis of parsley arbuscular endomycorrhiza - Infection, development and messenger-RNA levels of defense-related genes. Mol Plant-Microbe Interact 7: pp. 612-620 CrossRef
    72. Gallou, A, Declerck, S, Cranenbrouck, S (2012) Transcriptional regulation of defence genes and involvement of the WRKY transcription factor in arbuscular mycorrhizal potato root colonization. Funct Integr Genom 12: pp. 183-198 CrossRef
    73. Wulf, A, Manthey, K, Doll, J, Perlick, AM, Linke, B, Bekel, T, Meyer, F, Franken, P, Kuster, H, Krajinski, F (2003) Transcriptional changes in response to arbuscular mycorrhiza development in the model plant Medicago truncatula. Mol Plant-Microbe Interact 16: pp. 306-314 16.4.306" target="_blank" title="It opens in new window">CrossRef
    74. Fukai, E, Soyano, T, Umehara, Y, Nakayama, S, Hirakawa, H, Tabata, S, Sato, S, Hayashi, M (2012) Establishment of a Lotus japonicus gene tagging population using the exon-targeting endogenous retrotransposon LORE1. Plant J 69: pp. 720-730 CrossRef
    75. Tadege, M, Ratet, P, Mysore, KS (2005) Insertional mutagenesis: a Swiss army knife for functional genomics of Medicago truncatula. Trends Plant Sci 10: pp. 229-235 16/j.tplants.2005.03.009" target="_blank" title="It opens in new window">CrossRef
    76. Vandenbussche, M, Janssen, A, Zethof, J, Orsouw, N, Peters, J, Eijk, MJT, Rijpkema, AS, Schneiders, H, Santhanam, P, Been, M, Tunen, A, Gerats, T (2008) Generation of a 3D indexed Petunia insertion database for reverse genetics. Plant J 54: pp. 1105-1114 CrossRef
    77. Dereeper, A, Guignon, V, Blanc, G, Audic, S, Buffet, S, Chevenet, F, Dufayard, JF, Guindon, S, Lefort, V, Lescot, M, Claverie, JM, Gascuel, O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36: pp. W465-W469 CrossRef
    78. Anisimova, M, Gascuel, O (2006) Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Syst Biol 55: pp. 539-552 CrossRef
    79. Kersey, PJ, Staines, DM, Lawson, D, Kulesha, E, Derwent, P, Humphrey, JC, Hughes, DST, Keenan, S, Kerhornou, A, Koscielny, G, Langridge, N, McDowall, MD, Megy, K, Maheswari, U, Nuhn, M, Paulini, M, Pedro, H, Toneva, I, Wilson, D, Yates, A, Birney, E (2012) Ensembl Genomes: an integrative resource for genome-scale data from non-vertebrate species. Nucleic Acids Res 40: pp. D91-D97 CrossRef
    80. Junier, T, Zdobnov, EM (2010) The Newick utilities: high-throughput phylogenetic tree processing in the Unix shell. Bioinformatics 26: pp. 1669-1670 CrossRef
    81. Benedito, VA, Torres-Jerez, I, Murray, JD, Andriankaja, A, Allen, S, Kakar, K, Wandrey, M, Verdier, J, Zuber, H, Ott, T, Moreau, S, Niebel, A, Frickey, T, Weiller, G, He, J, Dai, X, Zhao, P, Tang, Y, Udvardi, M, Moreau, S, Niebel, A, Frickey, T, Weiller, G, He, J, Dai, X, Zhao, P, Tang, Y, Udvardi, M (2008) A gene expression atlas of the model legume Medicago truncatula. Plant J 55: pp. 504-513 CrossRef
    82. He, J, Benedito, VA, Wang, MY, Murray, JD, Zhao, PX, Tang, YH, Udvardi, MK (2009) The Medicago truncatula gene expression atlas web server. BMC Bioinformatics 10: pp. 441 CrossRef
    83. Smoot, ME, Ono, K, Ruscheinski, J, Wang, PL, Ideker, T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27: pp. 431-432 CrossRef
    84. Morris, JH, Apeltsin, L, Newman, AM, Baumbach, J, Wittkop, T, Su, G, Bader, GD, Ferrin, TE (2011) clusterMaker: a multi-algorithm clustering plugin for Cytoscape. BMC Bioinformatics 12: pp. 436 CrossRef
    85. Bailey, TL, Boden, M, Buske, FA, Frith, M, Grant, CE, Clementi, L, Ren, JY, Li, WW, Noble, WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37: pp. W202-W208 CrossRef
    86. Rice, P, Longden, I, Bleasby, A (2000) EMBOSS: The European molecular biology open software suite. Trends Genet 16: pp. 276-277 16/S0168-9525(00)02024-2" target="_blank" title="It opens in new window">CrossRef
    87. Delaux, PM, Varala, K, Edger, PP, Coruzzi, GM, Pires, JC, An茅, JM (2014) Comparative phylogenomics uncovers the impact of symbiotic associations on host genome evolution. PLoS Genet 10: pp. e1004487 CrossRef
  • 刊物主题:Plant Sciences; Agriculture; Tree Biology;
  • 出版者:BioMed Central
  • ISSN:1471-2229
文摘
Background Genes involved in arbuscular mycorrhizal (AM) symbiosis have been identified primarily by mutant screens, followed by identification of the mutated genes (forward genetics). In addition, a number of AM-related genes has been identified by their AM-related expression patterns, and their function has subsequently been elucidated by knock-down or knock-out approaches (reverse genetics). However, genes that are members of functionally redundant gene families, or genes that have a vital function and therefore result in lethal mutant phenotypes, are difficult to identify. If such genes are constitutively expressed and therefore escape differential expression analyses, they remain elusive. The goal of this study was to systematically search for AM-related genes with a bioinformatics strategy that is insensitive to these problems. The central element of our approach is based on the fact that many AM-related genes are conserved only among AM-competent species. Results Our approach involves genome-wide comparisons at the proteome level of AM-competent host species with non-mycorrhizal species. Using a clustering method we first established orthologous/paralogous relationships and subsequently identified protein clusters that contain members only of the AM-competent species. Proteins of these clusters were then analyzed in an extended set of 16 plant species and ranked based on their relatedness among AM-competent monocot and dicot species, relative to non-mycorrhizal species. In addition, we combined the information on the protein-coding sequence with gene expression data and with promoter analysis. As a result we present a list of yet uncharacterized proteins that show a strongly AM-related pattern of sequence conservation, indicating that the respective genes may have been under selection for a function in AM. Among the top candidates are three genes that encode a small family of similar receptor-like kinases that are related to the S-locus receptor kinases involved in sporophytic self-incompatibility. Conclusions We present a new systematic strategy of gene discovery based on conservation of the protein-coding sequence that complements classical forward and reverse genetics. This strategy can be applied to diverse other biological phenomena if species with established genome sequences fall into distinguished groups that differ in a defined functional trait of interest.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700