用户名: 密码: 验证码:
Microstructure of Banded Polymer Spherulites: New Insights from Synchrotron Nanofocus X-Ray Scattering
详细信息    查看全文
  • 关键词:Banded polymer spherulite ; Chain tilt ; High ; density poly(ethylene) ; Lamella chirality ; Nanocalorimetry ; Nanofocus X ; ray scattering ; Poly(3 ; hydroxybutyrate) ; Poly(trimethylene terephthalate) ; Synchrotron radiation
  • 刊名:Advances in Polymer Science
  • 出版年:2017
  • 出版时间:2017
  • 年:2017
  • 卷:277
  • 期:1
  • 页码:95-126
  • 参考文献:1.Bassett DC (2003) Polymer spherulites: a modern assessment. J Macromol Sci Part B Phys 42:227–256CrossRef
    2.Talbot WHF (1837) On the Optical Phenomena of Certain Crystals. Philos Trans R Soc London 127:25
    3.Knoll PM, Kelker H (2010) Otto Lehmann: Researcher of the liquid crystals. Books on Demand GmbH, Norderstedt
    4.ShtukenbergAG PYO, GunnE KB (2012) Spherulites. Chem Rev 112:1805–1838CrossRef
    5.Keller A (1958) Morphology of crystalline polymers. In: Turnbull D, Doremus RH, Roberts BW (eds) Growth and perfection of crystals. Chichester, Wiley Interscience, pp 499–528
    6.Keller A (1959) The morphology of crystalline polymers. Makromol Chem 34:1–28CrossRef
    7.Fujiwara Y (1960) Superstructure of melt-crystallized polyethylene (1) screwlike orientation of the unit cell in polyethylene spherulites with periodic extinction rings. J Appl Polym Sci 4:10–15CrossRef
    8.Seiler DA (1998) Modern fluoropolymers, 2nd edn. Wiley, Chichester
    9.Lovinger AJ (1981) Developments in crystalline polymers. Applied Science, London
    10.Gianotti G, Capizzi A, Zamboni V (1973) New aspects of polymorphism in poly(vinylidene fluoride). Relations between morphology and reaction kinetics. Chim Ind 55:501
    11.Prest Jr WM, Luca DJ (1975) The morphology and thermal response of high-temperature- crystallized poly(vinylidene fluoride). J Appl Phys 46:4136–4143
    12.Keith HD, Lovinger AJ (1979) Electron diffraction investigation of a high-temperature form of poly (vinylidene fluoride). Macromolecules 12:919–924CrossRef
    13.Garcia-Ruiz JM, Melero E, Hyde S (2009) Morphogenesis of self-assembled nanocrystalline materials of barium carbonate and silica. Science 323:362–365
    14.Bassett DC, Hodge AM (1978) On lamellar organization in certain polyethylene spherulites. Proc R Soc Lond A 359:121–132
    15.Bassett DC, Hodge AM (1981) On the morphology of melt-crystallized polyethylene. III. Spherulitic organization. Proc R Soc Lond A 377:61–71
    16.Bassett DC, Hodge AM (1978) On lamellar organization in banded spherulites of polyethylene. Polymer 19:469–472CrossRef
    17.Toda A, Arita T, Hikosaka M (2001) Three-dimensional morphology of PVDF single crystals forming banded spherulites. Polymer 42:2223–2233CrossRef
    18.Toda A, Keller A (1993) Growth of polyethylene single crystals from the melt: morphology. Colloid Polym Sci 271:328–342CrossRef
    19.Keith HD, Padden FJ (1984) Twisting orientation and the role of transient states in polymer crystallization. Polymer 25:28–42CrossRef
    20.Keith HD (2001) Banding in spherulites: two recurring topics. Polymer 42:9987–9993CrossRef
    21.Cheng SZD, Lotz B (2005) A critical assessment of unbalanced surface stresses as the mechanical origin of twisting and scrolling of polymer crystals. Polymer 46:577–610CrossRef
    22.Gazzano M, Focarete ML, Riekel C, Scandola M (2004) Structural study of poly(L-lactic acid) spherulites. Biomacromolecules 5:553–558CrossRef
    23.Gazzano M, Focarete ML, Riekel C, Scandola M (2000) Bacterial poly(3-hydroxybutyrate): an optical microscopy and microfocus X-ray diffraction study. Biomacromolecules 1:604–608
    24.Focarete ML, Gazzano M, Ripamonti A, Riekel C, Scandola M (2001) Structural investigation of poly(3-hydroxybutyrate) spherulites by microfocus X-ray diffraction. Macromol Chem Phys 202:1405–1409CrossRef
    25.Kajioka H, Yoshimoto S, Gosh RC, Taguchi K, Tanaka S, Toda A (2010) Microbeam X-ray diffraction of non-banded polymer spherulites of it-polystyrene and it-poly (butene-1). Polymer 51:1837–1844CrossRef
    26.Rosenthal M, Bar G, Burghammer M, Ivanov DA (2011) On the nature of chirality imparted to achiral polymers by the crystallization process. Angew Chem Int Ed Engl 123:9043–9047
    27.Rosenthal M, Anokhin DV, Luchnikov VA, Davies RJ, Riekel C, Burghammer M, Bar G, Ivanov DA (2010) Microstructure of banded polymer spherulites: studies with micro-focus X-ray diffraction. IOP Conf Ser:Mater Sci Eng 14:012014
    28.Rosenthal M, Burghammer M, Portale G, Bar G, Samulski ET, Ivanov DA (2012) Exploring the origin of crystalline lamella twist in semi-rigid chain polymers: the model of Keith and Padden revisited. Macromolecules 45:7454–7460CrossRef
    29.Rosenthal M, Burghammer M, Bar G, Samulski ET, Ivanov DA (2014) Switching chirality of hybrid left−right crystalline helicoids built of achiral polymer chains: when right to left becomes left to right. Macromolecules 47:8295–8304
    30.Rosenthal M, Hernandez JJ, Odarchenko YI, Soccio M, Lotti N, Di Cola E, Burghammer M, Ivanov DA (2013) Non-radial growth of helical homopolymer crystals: breaking the paradigm of the polymer spherulite microstructure. Macromol Rapid Commun 34:1815–1819CrossRef
    31.Nozue Y, Hirano S, Kurita R, Kawasaki N, Ueno S, Iida A, Nishi T, Amemiya Y (2004) Co-existing handednesses of lamella twisting in one spherulite observed with scanning microbeam wide-angle X-ray scattering. Polymer 45:8299–8302
    32..Luchnikov VA, Ivanov DA (2009) Micro-beam X-ray diffraction from twisted lamellar crystals: theory and computer simulation. J Appl Crystallogr 42:673–680
    33.Luchnikov VA, Ivanov DA (2010) Theory of geometrical broadening of diffraction peaks from twisted lamellar crystals for interpretation of X-ray micro-beam and selected-area electron diffraction experiments. J Appl Crystallogr 43:578–586
    34.Luchnikov VA, Anokhin DV, Bar G, Cheng SZD, Wang CL, Ivanov DA (2011) Theory of X-ray reflection broadening for textures with double-axis averaging: from semicrystalline polymers exhibiting twisted lamellar growth to discotic liquid crystals. J Appl Crystallogr 44:540–544CrossRef
    35.Polanyi M (1921) The X-ray fiber diagram. Z Phys 7:149–180
    36.Geil PH (1963) Polymer single crystals. Interscience (Wiley), New York
    37.Magonov SN, Yerina NA, Ungar G, Reneker DH, Ivanov DA (2003) Chain unfolding in single crystals of ultra long alkane C390H782 and polyethylene: an atomic force microscopy study. Macromolecules 36:5637–5649
    38.Hocquet S, Dosière M, Thierry A, Lotz B, Koch MHJ, Dubreuil N, Ivanov DA (2003) Morphology and melting of truncated single crystals of linear polyethylene. Macromolecules 36:8376–8384
    39.Dubreuil N, Hocquet S, Dosière M, Ivanov DA (2004) Melting of isochronously decorated single crystal of linear polyethylene, as monitored with atomic force microscopy. Macromolecules 37:1–5
    40.Toda A, Arita T, Hikosaka M, Hobbs JK, Miles MJ (2003) An atomic force microscopy observation of PVDF banded spherulites. J Macromol Sci Part B 42:753–760
    41.Gunn E, Sours R, Benedict JB, Kaminsky W, Kahr B (2006) Mesoscale chiroptics of rhythmic precipitates. J Am Chem Soc 128:14234–14235
    42.Gedde UW (1995) Polymer physics. Chapman & Hall, London
    43.Soccio M, Lotti N, Finelli L, Gazzano M, Munari A (2007) Aliphatic poly(propylene dicarboxylate)s: effect of chain length on thermal properties and crystallization kinetics. Polymer 48:3125–3136CrossRef
    44.Keith HD, Padden FJ Jr (1959) The optical behavior of spherulites in crystalline polymers. Part I Calculation of theoretical extinction patterns in spherulites with twisting crystalline orientation. J Polym Sci 39:101–122CrossRef
    45.Chuah HH (2001) Crystallization kinetics of poly(trimethylene terephthalate). Polym Eng Sci 41:308–313CrossRef
    46.Ward IM, Wilding MA, Brody H (1976) The mechanical properties and structure of poly(m-methylene terephthalate) fibers. J Polym Sci Polym Phys Ed 14:263–274CrossRef
    47.Poulin-Dandurand S, Pérez S, Revol JF, Brisse F (1979)The crystal structure of poly(trimethylene terephthalate) by X-ray and electron diffraction. Polymer 20:419–426
    48.Wang B, Li CY, Hanzlicek J, Cheng SZD, Geil PH, Grebowicz J, Ho RM (2001) Poly(trimethyleneteraphthalate) crystal structure and morphology in different length scales. Polymer 42:7171–7180CrossRef
    49.Yang J, Sidoti G, Liu J, Geil PH, Li CY, Cheng SZD (2000) Morphology and crystal structure of CTFMP and bulk polymerized poly(trimethylene terephthalate). Polymer 42:7181–7195CrossRef
    50.Hall IH (1984) Structure of crystalline polymers. Elsevier, London, p 39
    51.Hong PD, Chung WT, Hsu CF (2002) Crystallization kinetics and morphology of poly (trimethylene terephthalate). Polymer 43:3335–33543CrossRef
    52.Ho RM, Ke KZ, Chen M (2000) Crystal structure and banded spherulite of poly(trimethylene terephthalate). Macromolecules 33:7529–7537CrossRef
    53.Chuang W-T, Hong P-D, Chuah HH (2004) Effects of crystallization behavior on morphological change in poly(trimethylene terephthalate) spherulites. Polymer 45:2413–2425CrossRef
    54.Wu PL, Woo EM (2003) Correlation between melting behavior and ringed spherulites in poly(trimethylene terephthalate). J Polym Sci Part B: Polym Phys 41:80–93CrossRef
    55.Sornette D (2006) Critical phenomena in natural science. Springer, New York
    56.Auyang SY (1998) Foundations of complex system theories. Cambridge University Press, New YorkCrossRef
    57.Wu PL, Woo EM (2002) Linear versus nonlinear determinations of equilibrium melting temperatures of poly(trimethylene terephthalate) and miscible blend with poly(ether imide) exhibiting multiple melting peaks. J Polym Sci Part B: Polym Phys 40:1571–1581CrossRef
    58.Yun HJ, Kuboyama K, Chiba T, Ougizawa T (2006) Crystallization temperature dependence of interference color and morphology in poly(trimethylene terephthalate) spherulite. Polymer 47:4831–4838
    59.Yun JH, Kuboyama K, Ougizawa T (2006) High birefringence of poly(trimethylene terephthalate) spherulite. Polymer 47:1715–1721CrossRef
    60.Chen YF, Woo EM, Wu PL (2007) Alternating-layered spherulites in thin-film poly(trimethylene terephthalate) by stepwise crystallization schemes. Mater Lett 61:4911–4915CrossRef
    61.Toda A, Okamura M, Taguchi K, Hikosaka M, Kajioka H (2008) Branching and higher order structure in banded polyethylene spherulites. Macromolecules 41:2484–2493CrossRef
    62.Toda A, Taguchi K, Kajioka H (2008) Instability-driven branching of lamellar crystals in polyethylene spherulites. Macromolecules 41:7505–7512CrossRef
    63.Eshelby JD (1953) Screw dislocations in thin rods. J Appl Phys 24:176–179CrossRef
    64.Duke RW, DuPre DB, Samulski ET (1977) Temperature dependence of orientational order in a polypeptide liquid crystal. J Chem Phys 66:2748–2749
    65.Ivanov DA, Bar G, Dosière M, Koch MHJ (2008) A novel view on crystallization and melting of semirigid chain polymers: The case of poly(trimethylene terephthalate). Macromolecules 41:9224–9231
    66.Ivanov DA, Hocquet S, Dosière M, Koch M (2004) Exploring the melting of a semirigid chain polymer with synchrotron time- and temperature-resolved small-angle X-ray scattering. Eur Phys J E 13:363–378
    67.Ivanov DA, Legras R, Jonas AM (1999) The crystallization of poly(aryl-ether-ether-ketone) (PEEK). Interdependence between the evolution of amorphous and crystalline regions during isothermal cold-crystallization. Macromolecules 32:1582–1592
    68.Ivanov DA, Jonas AM, Legras R (2000) The crystallization of poly(aryl-ether-ether-ketone) (PEEK). Reorganization processes during gradual reheating of cold-crystallized samples. Polymer 41:3719–3727
    69.Ivanov D, Pop T, Yoon D, Jonas A (2002) Direct space detection of order-disorder interphases at crystalline-amorphous boundaries in a semicrystalline polymer. Macromolecules 35:9813–9818
    70.Kumar SK, Yoon DY (1989) Lattice model for interphases in binary semicrystalline/amorphous polymer blends. Macromolecules 22:4098–4101CrossRef
    71.Kumar SK, Yoon DY (1991) A lattice model for interphases in binary semicrystalline/amorphous polymer blends. 2. Effects of tight fold energy. Macromolecules 24:5414–5420CrossRef
    72.Amalou Z (2006) Contribution à l'étude de la structure semi-cristalline des polymères à chaînes semi-rigides. Thesis. Université Libre de Bruxelles, Brussels, Belgium
    73.Rosenthal M, Doblas D, Hernandez JJ, Odarchenko YaI, Burghammer M, Di Cola E, Spitzer D, Antipov AE, Aldoshin LS, Ivanov DA (2014) High-resolution thermal imaging with a combination of nano-focus X-ray diffraction and ultra-fast chip calorimetry. J Synchrotron Radiat 21:223–228
    74.Riekel C, Di Cola E, Burghammer M, Reynolds M, Rosenthal M, Doblas D, Ivanov DA (2015) Thermal transformations of self-assembled gold glyconanoparticles probed by combined nanocalorimetry and X-ray nanobeam scattering. Langmuir 31:529–534
    75.Melnikov AP, Rosenthal M, Rodygin AI, Doblas D, Anokhin DV, Burghammer M, Ivanov DA (2016) Re-exploring the double-melting behavior of semirigid-chain polymers with an in-situ combination of synchrotron nano-focus X-ray scattering and nanocalorimetry. Eur Polym J 81:598–606. DOI: 10.​1016/​j.​eurpolymj.​2015.​12.​031
    76.Rosenthal M, Melnikov AP, Rychkov AA, Doblas D, Anokhin DV, Burghammer M, and Ivanov DA (2016) Design of an in-situ setup combining nanocalorimetry and nano- or micro-focus X-ray scattering to address fast structure formation processes. In: Schick C, Mathot V (eds) Fast scanning calorimetry. Springer, Switzerland, pp 299–326
    77.Melnikov AP, Rosenthal M, Burghammer M, Anokhin DV, Ivanov DA (2016) Study of melting processes in semicrystalline polymers using a combination of ultrafast chip calorimetry and nanofocus synchrotron X-ray diffraction. Nanotechnol Russ 11:305–311. doi:10.​1134/​S199507801603011​3
    78.Ivanov DA, Jonas AM (1998) Isothermal growth and reorganization upon heating of a single poly(aryl-ether-ether-ketone) (PEEK) spherulite, as imaged by atomic force microscopy. Macromolecules 31:4546–4550
    79.Ivanov DA, Nysten B, Jonas AM (1999) Atomic force microscopy imaging of single polymer spherulites during crystallization: application to a semi-crystalline blend. Polymer 40:5899–5905
    80.Ivanov DA, Amalou Z, Magonov SN (2001) Real-time evolution of the lamellar organization of poly(ethylene terephthalate) during crystallization from the melt: high-temperature atomic force microscopy study. Macromolecules 34:8944–8952
    81.Basire C, Ivanov DA (2000) Evolution of the lamellar structure during crystallization of a semicrystalline-amorphous polymer blend: time-resolved hot-stage SPM study. Phys Rev Lett 85:5587–5590
    82.Saracovan J, Keith HD, Manley RSJ, Brown GR (1999) Banding in spherulites of polymers having uncompensated main-chain chirality. Macromolecules 32:8918CrossRef
    83.Ye HM, Xu J, Guo BH, Iwata T (2009) Left- or right-handed lamellar twists in poly[(R)-3-hydroxyvalerate] banded spherulite: dependence on growth axis. Macromolecules 42:694–701CrossRef
  • 作者单位:Dimitri A. Ivanov (22) (23)
    Martin Rosenthal (23) (24)

    22. Institut de Sciences des Matériaux de Mulhouse - IS2M, CNRS UMR7361, 15 Jean Starcky, 68057, Mulhouse, France
    23. Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University (MSU), GSP-1, Leninskie gory - 1, 119991, Moscow, Russia
    24. European Synchrotron Radiation Facility (ESRF), 6 rue Jules Horowitz, 38043, Grenoble, France
  • 丛书名:Polymer Crystallization II
  • ISBN:978-3-319-50684-5
  • 卷排序:277
文摘
We report on the banded polymer morphology of several semicrystalline commodity polymers such as high-density poly(ethylene), poly(trimethylene terephthalate), poly(vinylidene fluoride), and poly(3-hydroxybutyrate). The internal structural organization and 3D shape of the constitutive crystalline lamellae have been topics of interest in polymer physics for the last 50 years. However, conventional morphological characterization techniques (electron and/or optical microscopy) can be misleading in such analyses and have resulted in wrong interpretations of the twisted lamella growth mechanisms. We present nanofocus synchrotron X-ray scattering experiments and describe the analysis used to interpret the arrays of nanodiffractograms acquired along the spherulitic radii. It is shown that the crystal twist occurring during radial outward growth is regular and uniform. The 3D lamella shape is in most cases similar to the classic helicoid, whereas in other cases, such as the lamellae of poly(propylene adipate), it corresponds to a spiral structure. Access to comprehensive microstructural information about bulk samples makes it possible to better understand the twisted growth mechanisms and check the premises of the Keith and Padden model linking the direction of chain tilt and lamella twist hand. It is demonstrated that this model cannot explain the banding behavior in poly(trimethylene terephthalate) and therefore needs reconsideration. In-depth analysis of the microstructure allows more general conclusions to be drawn regarding correlation of chiralities pertinent to different spatial scales, ranging from that of the constitutive monomer to the supramolecular level of twisted lamellae.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700