用户名: 密码: 验证码:
Androgen receptor and gene network: Micromechanics reassemble the signaling machinery of TMPRSS2-ERG positive prostate cancer cells
详细信息    查看全文
  • 作者:Ammad Ahmad Farooqi (1)
    Ming-Feng Hou (2) (3) (4)
    Chien-Chi Chen (5)
    Chun-Lin Wang (5)
    Hsueh-Wei Chang (2) (6) (7) (8)

    1. Laboratory for Translational Oncology and Personalized Medicine
    ; Rashid Latif Medical College ; 35 Km Ferozepur Road ; Lahore ; Pakistan
    2. Cancer Center
    ; Kaohsiung Medical University Hospital ; Kaohsiung Medical University ; Kaohsiung ; Taiwan
    3. Institute of Clinical Medicine
    ; Kaohsiung Medical University ; Kaohsiung ; Taiwan
    4. Kaohsiung Municipal Ta-Tung Hospital
    ; Kaohsiung ; Taiwan
    5. Food Industry Research and Development Institute
    ; Bioresource Collection and Research Center ; Hsinchu ; Taiwan
    6. Institute of Medical Science and Technology
    ; National Sun Yat-sen University ; Kaohsiung ; Taiwan
    7. Translational Research Center
    ; Kaohsiung Medical University Hospital ; Kaohsiung Medical University ; Kaohsiung ; Taiwan
    8. Department of Biomedical Science and Environmental Biology
    ; Kaohsiung Medical University ; Kaohsiung ; Taiwan
  • 刊名:Cancer Cell International
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:14
  • 期:1
  • 全文大小:251 KB
  • 参考文献:1. Ribarska, T, Bastian, KM, Koch, A, Schulz, WA (2012) Specific changes in the expression of imprinted genes in prostate cancer鈥搃mplications for cancer progression and epigenetic regulation. Asian J Androl 14: pp. 436-450
    2. Kumar-Sinha, C, Tomlins, SA, Chinnaiyan, AM (2008) Recurrent gene fusions in prostate cancer. Nat Rev Cancer 8: pp. 497-511
    3. Chiu, YT, Liu, J, Tang, K, Wong, YC, Khanna, KK, Ling, MT (2012) Inactivation of ATM/ATR DNA damage checkpoint promotes androgen induced chromosomal instability in prostate epithelial cells. PLoS One 7: pp. e51108
    4. Bonaccorsi, L, Nesi, G, Nuti, F, Paglierani, M, Krausz, C, Masieri, L, Serni, S, Proietti-Pannunzi, L, Fang, Y, Jhanwar, SC, Orlando, C, Carini, M, Forti, G, Baldi, E, Luzzatto, L (2009) Persistence of expression of the TMPRSS2:ERG fusion gene after pre-surgery androgen ablation may be associated with early prostate specific antigen relapse of prostate cancer: preliminary results. J Endocrinol Invest 32: pp. 590-596
    5. Lin, C, Yang, L, Tanasa, B, Hutt, K, Ju, BG, Ohgi, K, Zhang, J, Rose, DW, Fu, XD, Glass, CK, Rosenfeld, MG (2009) Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 139: pp. 1069-1083
    6. Haffner, MC, Aryee, MJ, Toubaji, A, Esopi, DM, Albadine, R, Gurel, B, Isaacs, WB, Bova, GS, Liu, W, Xu, J, Meeker, AK, Netto, G, De Marzo, AM, Nelson, WG, Yegnasubramanian, S (2010) Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat Genet 42: pp. 668-675
    7. Rubin, MA (2012) ETS rearrangements in prostate cancer. Asian J Androl 14: pp. 393-399
    8. Albano, F, Anelli, L, Zagaria, A, Coccaro, N, Casieri, P, Rossi, AR, Vicari, L, Liso, V, Rocchi, M, Specchia, G (2010) Non random distribution of genomic features in breakpoint regions involved in chronic myeloid leukemia cases with variant t(9;22) or additional chromosomal rearrangements. Mol Cancer 9: pp. 120
    9. Han, S, Brenner, JC, Sabolch, A, Jackson, W, Speers, C, Wilder-Romans, K, Knudsen, KE, Lawrence, TS, Chinnaiyan, AM, Feng, FY (2013) Targeted radiosensitization of ETS fusion-positive prostate cancer through PARP1 inhibition. Neoplasia 15: pp. 1207-1217
    10. Narod, SA, Seth, A, Nam, R (2008) Fusion in the ETS gene family and prostate cancer. Br J Cancer 99: pp. 847-851
    11. Shah, RB, Chinnaiyan, AM (2009) The discovery of common recurrent transmembrane protease serine 2 (TMPRSS2)-erythroblastosis virus E26 transforming sequence (ETS) gene fusions in prostate cancer: significance and clinical implications. Adv Anat Pathol 16: pp. 145-153
    12. Clark, JP, Cooper, CS (2009) ETS gene fusions in prostate cancer. Nat Rev Urol 6: pp. 429-439
    13. FitzGerald, LM, Agalliu, I, Johnson, K, Miller, MA, Kwon, EM, Hurtado-Coll, A, Fazli, L, Rajput, AB, Gleave, ME, Cox, ME, Ostrander, EA, Stanford, JL, Huntsman, DG (2008) Association of TMPRSS2-ERG gene fusion with clinical characteristics and outcomes: results from a population-based study of prostate cancer. BMC Cancer 8: pp. 230
    14. Turner, NC, Reis-Filho, JS (2012) Genetic heterogeneity and cancer drug resistance. Lancet Oncol 13: pp. e178-185
    15. Lee, AJ, Swanton, C (2012) Tumour heterogeneity and drug resistance: personalising cancer medicine through functional genomics. Biochem Pharmacol 83: pp. 1013-1020
    16. Gerlinger, M, Swanton, C (2010) How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine. Br J Cancer 103: pp. 1139-1143
    17. Marusyk, A, Almendro, V, Polyak, K (2012) Intra-tumour heterogeneity: a looking glass for cancer?. Nat Rev Cancer 12: pp. 323-334
    18. Brabletz, T (2012) To differentiate or not鈥搑outes towards metastasis. Nat Rev Cancer 12: pp. 425-436
    19. Clark, J, Merson, S, Jhavar, S, Flohr, P, Edwards, S, Foster, CS, Eeles, R, Martin, FL, Phillips, DH, Crundwell, M, Christmas, T, Thompson, A, Fisher, C, Kovacs, G, Cooper, CS (2007) Diversity of TMPRSS2-ERG fusion transcripts in the human prostate. Oncogene 26: pp. 2667-2673
    20. Borno, ST, Fischer, A, Kerick, M, Falth, M, Laible, M, Brase, JC, Kuner, R, Dahl, A, Grimm, C, Sayanjali, B, Isau, M, Rohr, C, Wunderlich, A, Timmermann, B, Claus, R, Plass, C, Graefen, M, Simon, R, Demichelis, F, Rubin, MA, Sauter, G, Schlomm, T, Sultmann, H, Lehrach, H, Schweiger, MR (2012) Genome-wide DNA methylation events in TMPRSS2-ERG fusion-negative prostate cancers implicate an EZH2-dependent mechanism with miR-26a hypermethylation. Cancer Discov 2: pp. 1024-1035
    21. Grupp, K, Diebel, F, Sirma, H, Simon, R, Breitmeyer, K, Steurer, S, Hube-Magg, C, Prien, K, Pham, T, Weigand, P, Michl, U, Heinzer, H, Kluth, M, Minner, S, Tsourlakis, MC, Izbicki, JR, Sauter, G, Schlomm, T, Wilczak, W (2013) SPINK1 expression is tightly linked to 6q15- and 5q21-deleted ERG-fusion negative prostate cancers but unrelated to PSA recurrence. Prostate 73: pp. 1690-1698
    22. Sirma, H, Broemel, M, Stumm, L, Tsourlakis, T, Steurer, S, Tennstedt, P, Salomon, G, Michl, U, Haese, A, Simon, R, Sauter, G, Schlomm, T, Minner, S (2013) Loss of CDKN1B/p27Kip1 expression is associated with ERG fusion-negative prostate cancer, but is unrelated to patient prognosis. Oncol Lett 6: pp. 1245-1252
    23. Stumm, L, Burkhardt, L, Steurer, S, Simon, R, Adam, M, Becker, A, Sauter, G, Minner, S, Schlomm, T, Sirma, H, Michl, U (2013) Strong expression of the neuronal transcription factor FOXP2 is linked to an increased risk of early PSA recurrence in ERG fusion-negative cancers. J Clin Pathol 66: pp. 563-568
    24. Grupp, K, Boumesli, R, Tsourlakis, MC, Koop, C, Wilczak, W, Adam, M, Sauter, G, Simon, R, Izbicki, JR, Graefen, M, Huland, H, Steurer, S, Schlomm, T, Minner, S, Quaas, A (2014) Int J Cancer.
    25. Fodde, R, Smits, R, Clevers, H (2001) APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer 1: pp. 55-67
    26. Schwartzman, J, Mongoue-Tchokote, S, Gibbs, A, Gao, L, Corless, CL, Jin, J, Zarour, L, Higano, C, True, LD, Vessella, RL, Wilmot, B, Bottomly, D, McWeeney, SK, Bova, GS, Partin, AW, Mori, M, Alumkal, J (2011) A DNA methylation microarray-based study identifies ERG as a gene commonly methylated in prostate cancer. Epigenetics 6: pp. 1248-1256
    27. Mani, RS, Iyer, MK, Cao, Q, Brenner, JC, Wang, L, Ghosh, A, Cao, X, Lonigro, RJ, Tomlins, SA, Varambally, S, Chinnaiyan, AM (2011) TMPRSS2-ERG-mediated feed-forward regulation of wild-type ERG in human prostate cancers. Cancer Res 71: pp. 5387-5392
    28. Hoogland, AM, Jenster, G, van Weerden, WM, Trapman, J, van der Kwast, T, Roobol, MJ, Schroder, FH, Wildhagen, MF, van Leenders, GJ (2012) ERG immunohistochemistry is not predictive for PSA recurrence, local recurrence or overall survival after radical prostatectomy for prostate cancer. Mod Pathol 25: pp. 471-479
    29. Yu, J, Yu, J, Mani, RS, Cao, Q, Brenner, CJ, Cao, X, Wang, X, Wu, L, Li, J, Hu, M, Gong, Y, Cheng, H, Laxman, B, Vellaichamy, A, Shankar, S, Li, Y, Dhanasekaran, SM, Morey, R, Barrette, T, Lonigro, RJ, Tomlins, SA, Varambally, S, Qin, ZS, Chinnaiyan, AM (2010) An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 17: pp. 443-454
    30. Bastus, NC, Boyd, LK, Mao, X, Stankiewicz, E, Kudahetti, SC, Oliver, RT, Berney, DM, Lu, YJ (2010) Androgen-induced TMPRSS2:ERG fusion in nonmalignant prostate epithelial cells. Cancer Res 70: pp. 9544-9548
    31. Hermans, KG, van Marion, R, van Dekken, H, Jenster, G, van Weerden, WM, Trapman, J (2006) TMPRSS2:ERG fusion by translocation or interstitial deletion is highly relevant in androgen-dependent prostate cancer, but is bypassed in late-stage androgen receptor-negative prostate cancer. Cancer Res 66: pp. 10658-10663
    32. Lehmusvaara, S, Erkkila, T, Urbanucci, A, Waltering, K, Seppala, J, Larjo, A, Tuominen, VJ, Isola, J, Kujala, P, Lahdesmaki, H, Kaipia, A, Tammela, T, Visakorpi, T (2012) Chemical castration and anti-androgens induce differential gene expression in prostate cancer. J Pathol 227: pp. 336-345
    33. Ateeq, B, Vellaichamy, A, Tomlins, SA, Wang, R, Cao, Q, Lonigro, RJ, Pienta, KJ, Varambally, S (2012) Role of dutasteride in pre-clinical ETS fusion-positive prostate cancer models. Prostate 72: pp. 1542-1549
    34. Brase, JC, Johannes, M, Mannsperger, H, Falth, M, Metzger, J, Kacprzyk, LA, Andrasiuk, T, Gade, S, Meister, M, Sirma, H, Sauter, G, Simon, R, Schlomm, T, Beissbarth, T, Korf, U, Kuner, R, Sultmann, H (2011) TMPRSS2-ERG -specific transcriptional modulation is associated with prostate cancer biomarkers and TGF-beta signaling. BMC Cancer 11: pp. 507
    35. Taylor, BS, Schultz, N, Hieronymus, H, Gopalan, A, Xiao, Y, Carver, BS, Arora, VK, Kaushik, P, Cerami, E, Reva, B, Antipin, Y, Mitsiades, N, Landers, T, Dolgalev, I, Major, JE, Wilson, M, Socci, ND, Lash, AE, Heguy, A, Eastham, JA, Scher, HI, Reuter, VE, Scardino, PT, Sander, C, Sawyers, CL, Gerald, WL (2010) Integrative genomic profiling of human prostate cancer. Cancer Cell 18: pp. 11-22
    36. Mao, X, Boyd, LK, Yanez-Munoz, RJ, Chaplin, T, Xue, L, Lin, D, Shan, L, Berney, DM, Young, BD, Lu, YJ (2011) Chromosome rearrangement associated inactivation of tumour suppressor genes in prostate cancer. Am J Cancer Res 1: pp. 604-617
    37. Ummanni, R, Barreto, F, Venz, S, Scharf, C, Barett, C, Mannsperger, HA, Brase, JC, Kuner, R, Schlomm, T, Sauter, G, Sultmann, H, Korf, U, Bokemeyer, C, Walther, R, Brummendorf, TH, Balabanov, S (2012) Peroxiredoxins 3 and 4 are overexpressed in prostate cancer tissue and affect the proliferation of prostate cancer cells in vitro. J Proteome Res 11: pp. 2452-2466
    38. Brenner, JC, Ateeq, B, Li, Y, Yocum, AK, Cao, Q, Asangani, IA, Patel, S, Wang, X, Liang, H, Yu, J, Palanisamy, N, Siddiqui, J, Yan, W, Cao, X, Mehra, R, Sabolch, A, Basrur, V, Lonigro, RJ, Yang, J, Tomlins, SA, Maher, CA, Elenitoba-Johnson, KS, Hussain, M, Navone, NM, Pienta, KJ, Varambally, S, Feng, FY, Chinnaiyan, AM (2011) Mechanistic rationale for inhibition of poly(ADP-ribose) polymerase in ETS gene fusion-positive prostate cancer. Cancer Cell 19: pp. 664-678
    39. Hendrickson, WK, Flavin, R, Kasperzyk, JL, Fiorentino, M, Fang, F, Lis, R, Fiore, C, Penney, KL, Ma, J, Kantoff, PW, Stampfer, MJ, Loda, M, Mucci, LA, Giovannucci, E (2011) Vitamin D receptor protein expression in tumor tissue and prostate cancer progression. J Clin Oncol 29: pp. 2378-2385
    40. Washington, MN, Weigel, NL (2010) 1{alpha},25-Dihydroxyvitamin D3 inhibits growth of VCaP prostate cancer cells despite inducing the growth-promoting TMPRSS2:ERG gene fusion. Endocrinology 151: pp. 1409-1417
    41. Leshem, O, Madar, S, Kogan-Sakin, I, Kamer, I, Goldstein, I, Brosh, R, Cohen, Y, Jacob-Hirsch, J, Ehrlich, M, Ben-Sasson, S, Goldfinger, N, Loewenthal, R, Gazit, E, Rotter, V, Berger, R (2011) TMPRSS2/ERG promotes epithelial to mesenchymal transition through the ZEB1/ZEB2 axis in a prostate cancer model. PLoS One 6: pp. e21650
    42. Hollenhorst, PC, Ferris, MW, Hull, MA, Chae, H, Kim, S, Graves, BJ (2011) Oncogenic ETS proteins mimic activated RAS/MAPK signaling in prostate cells. Genes Dev 25: pp. 2147-2157
    43. Hollenhorst, PC (2012) RAS/ERK pathway transcriptional regulation through ETS/AP-1 binding sites. Small GTPases 3: pp. 154-158
    44. Yin, L, Rao, P, Elson, P, Wang, J, Ittmann, M, Heston, WD (2011) Role of TMPRSS2-ERG gene fusion in negative regulation of PSMA expression. PLoS One 6: pp. e21319
    45. Li, Y, Kong, D, Wang, Z, Ahmad, A, Bao, B, Padhye, S, Sarkar, FH (2011) Inactivation of AR/TMPRSS2-ERG/Wnt signaling networks attenuates the aggressive behavior of prostate cancer cells. Cancer Prev Res (Phila) 4: pp. 1495-1506
    46. Iljin, K, Wolf, M, Edgren, H, Gupta, S, Kilpinen, S, Skotheim, RI, Peltola, M, Smit, F, Verhaegh, G, Schalken, J, Nees, M, Kallioniemi, O (2006) TMPRSS2 fusions with oncogenic ETS factors in prostate cancer involve unbalanced genomic rearrangements and are associated with HDAC1 and epigenetic reprogramming. Cancer Res 66: pp. 10242-10246
    47. Gupta, S, Iljin, K, Sara, H, Mpindi, JP, Mirtti, T, Vainio, P, Rantala, J, Alanen, K, Nees, M, Kallioniemi, O (2010) FZD4 as a mediator of ERG oncogene-induced WNT signaling and epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res 70: pp. 6735-6745
    48. Nhili, R, Peixoto, P, Depauw, S, Flajollet, S, Dezitter, X, Munde, MM, Ismail, MA, Kumar, A, Farahat, AA, Stephens, CE, Duterque-Coquillaud, M, David Wilson, W, Boykin, DW, David-Cordonnier, MH (2013) Targeting the DNA-binding activity of the human ERG transcription factor using new heterocyclic dithiophene diamidines. Nucleic Acids Res 41: pp. 125-138
    49. Rickman, DS, Chen, YB, Banerjee, S, Pan, Y, Yu, J, Vuong, T, Perner, S, Lafargue, CJ, Mertz, KD, Setlur, SR, Sircar, K, Chinnaiyan, AM, Bismar, TA, Rubin, MA, Demichelis, F (2010) ERG cooperates with androgen receptor in regulating trefoil factor 3 in prostate cancer disease progression. Neoplasia 12: pp. 1031-1040
    50. Kubosaki, A, Tomaru, Y, Tagami, M, Arner, E, Miura, H, Suzuki, T, Suzuki, M, Suzuki, H, Hayashizaki, Y (2009) Genome-wide investigation of in vivo EGR-1 binding sites in monocytic differentiation. Genome Biol 10: pp. R41
    51. Vitari, AC, Leong, KG, Newton, K, Yee, C, O'Rourke, K, Liu, J, Phu, L, Vij, R, Ferrando, R, Couto, SS, Mohan, S, Pandita, A, Hongo, JA, Arnott, D, Wertz, IE, Gao, WQ, French, DM, Dixit, VM (2011) COP1 is a tumour suppressor that causes degradation of ETS transcription factors. Nature 474: pp. 403-406
    52. Shaikhibrahim, Z, Lindstrot, A, Ellinger, J, Rogenhofer, S, Buettner, R, Perner, S, Wernert, N (2012) The peripheral zone of the prostate is more prone to tumor development than the transitional zone: is the ETS family the key?. Mol Med Rep 5: pp. 313-316
    53. Ribeiro, FR, Paulo, P, Costa, VL, Barros-Silva, JD, Ramalho-Carvalho, J, Jeronimo, C, Henrique, R, Lind, GE, Skotheim, RI, Lothe, RA, Teixeira, MR (2011) Cysteine-rich secretory protein-3 (CRISP3) is strongly up-regulated in prostate carcinomas with the TMPRSS2-ERG fusion gene. PLoS One 6: pp. e22317
    54. Magistroni, V, Mologni, L, Sanselicio, S, Reid, JF, Redaelli, S, Piazza, R, Viltadi, M, Bovo, G, Strada, G, Grasso, M, Gariboldi, M, Gambacorti-Passerini, C (2011) ERG deregulation induces PIM1 over-expression and aneuploidy in prostate epithelial cells. PLoS One 6: pp. e28162
    55. Flajollet, S, Tian, TV, Flourens, A, Tomavo, N, Villers, A, Bonnelye, E, Aubert, S, Leroy, X, Duterque-Coquillaud, M (2011) Abnormal expression of the ERG transcription factor in prostate cancer cells activates osteopontin. Mol Cancer Res 9: pp. 914-924
    56. Paulo, P, Ribeiro, FR, Santos, J, Mesquita, D, Almeida, M, Barros-Silva, JD, Itkonen, H, Henrique, R, Jeronimo, C, Sveen, A, Mills, IG, Skotheim, RI, Lothe, RA, Teixeira, MR (2012) Molecular subtyping of primary prostate cancer reveals specific and shared target genes of different ETS rearrangements. Neoplasia 14: pp. 600-611
    57. Wang, J, Cai, Y, Shao, LJ, Siddiqui, J, Palanisamy, N, Li, R, Ren, C, Ayala, G, Ittmann, M (2011) Activation of NF-{kappa}B by TMPRSS2/ERG fusion isoforms through toll-like receptor-4. Cancer Res 71: pp. 1325-1333
    58. Becker-Santos, DD, Guo, Y, Ghaffari, M, Vickers, ED, Lehman, M, Altamirano-Dimas, M, Oloumi, A, Furukawa, J, Sharma, M, Wang, Y, Dedhar, S, Cox, ME (2012) Integrin-linked kinase as a target for ERG-mediated invasive properties in prostate cancer models. Carcinogenesis 33: pp. 2558-2567
    59. Muller, J, Ehlers, A, Burkhardt, L, Sirma, H, Steuber, T, Graefen, M, Sauter, G, Minner, S, Simon, R, Schlomm, T, Michl, U (2013) Loss of pSer2448-mTOR expression is linked to adverse prognosis and tumor progression in ERG-fusion-positive cancers. Int J Cancer 132: pp. 1333-1340
    60. Hawksworth, D, Ravindranath, L, Chen, Y, Furusato, B, Sesterhenn, IA, McLeod, DG, Srivastava, S, Petrovics, G (2010) Overexpression of C-MYC oncogene in prostate cancer predicts biochemical recurrence. Prostate Cancer Prostatic Dis 13: pp. 311-315
    61. Chow, A, Amemiya, Y, Sugar, L, Nam, R, Seth, A (2012) Whole-transcriptome analysis reveals established and novel associations with TMPRSS2:ERG fusion in prostate cancer. Anticancer Res 32: pp. 3629-3641
    62. Cai, C, Wang, H, He, HH, Chen, S, He, L, Ma, F, Mucci, L, Wang, Q, Fiore, C, Sowalsky, AG, Loda, M, Liu, XS, Brown, M, Balk, SP, Yuan, X (2013) ERG induces androgen receptor-mediated regulation of SOX9 in prostate cancer. J Clin Invest 123: pp. 1109-1122
    63. Kacprzyk, LA, Laible, M, Andrasiuk, T, Brase, JC, Borno, ST, Falth, M, Kuner, R, Lehrach, H, Schweiger, MR, Sultmann, H (2013) ERG induces epigenetic activation of Tudor domain-containing protein 1 (TDRD1) in ERG rearrangement-positive prostate cancer. PLoS One 8: pp. e59976
    64. Chinni, S, Singareddy, R, Semaan, L, Conley-Lacomb, MK, St John, J, Powell, K, Iyer, M, Smith, D, Heilbrun, LK, Shi, D, Sakr, W, Cher, ML (2013) Transcriptional regulation of CXCR4 in prostate tumor cells: Significance of TMPRSS2-ERG fusions. Mol Cancer Res.
    65. Tian, TV, Tomavo, N, Huot, L, Flourens, A, Bonnelye, E, Flajollet, S, Hot, D, Leroy, X, de Launoit, Y, Duterque-Coquillaud, M (2013) Identification of novel TMPRSS2:ERG mechanisms in prostate cancer metastasis: involvement of MMP9 and PLXNA2. Oncogene.
    66. Chen, R, Zeng, X, Zhang, R, Huang, J, Kuang, X, Yang, J, Liu, J, Tawfik, O, Brantley Thrasher, J, Li, B (2013) Ca1.3 channel alpha protein is overexpressed and modulates androgen receptor transactivation in prostate cancers. Urol Oncol.
    67. Chen, CD, Welsbie, DS, Tran, C, Baek, SH, Chen, R, Vessella, R, Rosenfeld, MG, Sawyers, CL (2004) Molecular determinants of resistance to antiandrogen therapy. Nat Med 10: pp. 33-39
    68. Ribas, J, Ni, X, Haffner, M, Wentzel, EA, Salmasi, AH, Chowdhury, WH, Kudrolli, TA, Yegnasubramanian, S, Luo, J, Rodriguez, R, Mendell, JT, Lupold, SE (2009) miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Res 69: pp. 7165-7169
    69. Epis, MR, Giles, KM, Barker, A, Kendrick, TS, Leedman, PJ (2009) miR-331-3p regulates ERBB-2 expression and androgen receptor signaling in prostate cancer. J Biol Chem 284: pp. 24696-24704
    70. Casey, OM, Fang, L, Hynes, PG, Abou-Kheir, WG, Martin, PL, Tillman, HS, Petrovics, G, Awwad, HO, Ward, Y, Lake, R, Zhang, L, Kelly, K (2012) TMPRSS2- driven ERG expression in vivo increases self-renewal and maintains expression in a castration resistant subpopulation. PLoS One 7: pp. e41668
    71. Berger, R, Lin, DI, Nieto, M, Sicinska, E, Garraway, LA, Adams, H, Signoretti, S, Hahn, WC, Loda, M (2006) Androgen-dependent regulation of Her-2/neu in prostate cancer cells. Cancer Res 66: pp. 5723-5728
    72. Cai, C, Portnoy, DC, Wang, H, Jiang, X, Chen, S, Balk, SP (2009) Androgen receptor expression in prostate cancer cells is suppressed by activation of epidermal growth factor receptor and ErbB2. Cancer Res 69: pp. 5202-5209
    73. Pignon, JC, Koopmansch, B, Nolens, G, Delacroix, L, Waltregny, D, Winkler, R (2009) Androgen receptor controls EGFR and ERBB2 gene expression at different levels in prostate cancer cell lines. Cancer Res 69: pp. 2941-2949
    74. Hsu, FN, Yang, MS, Lin, E, Tseng, CF, Lin, H (2011) The significance of Her2 on androgen receptor protein stability in the transition of androgen requirement in prostate cancer cells. Am J Physiol Endocrinol Metab 300: pp. E902-908
    75. Mellinghoff, IK, Vivanco, I, Kwon, A, Tran, C, Wongvipat, J, Sawyers, CL (2004) HER2/neu kinase-dependent modulation of androgen receptor function through effects on DNA binding and stability. Cancer Cell 6: pp. 517-527
    76. Gregory, CW, Whang, YE, McCall, W, Fei, X, Liu, Y, Ponguta, LA, French, FS, Wilson, EM, Earp, HS (2005) Heregulin-induced activation of HER2 and HER3 increases androgen receptor transactivation and CWR-R1 human recurrent prostate cancer cell growth. Clin Cancer Res 11: pp. 1704-1712
    77. Liu, Y, Majumder, S, McCall, W, Sartor, CI, Mohler, JL, Gregory, CW, Earp, HS, Whang, YE (2005) Inhibition of HER-2/neu kinase impairs androgen receptor recruitment to the androgen responsive enhancer. Cancer Res 65: pp. 3404-3409
    78. Epis, MR, Barker, A, Giles, KM, Beveridge, DJ, Leedman, PJ (2011) The RNA-binding protein HuR opposes the repression of ERBB-2 gene expression by microRNA miR-331-3p in prostate cancer cells. J Biol Chem 286: pp. 41442-41454
    79. Yeap, BB, Voon, DC, Vivian, JP, McCulloch, RK, Thomson, AM, Giles, KM, Czyzyk-Krzeska, MF, Furneaux, H, Wilce, MC, Wilce, JA, Leedman, PJ (2002) Novel binding of HuR and poly(C)-binding protein to a conserved UC-rich motif within the 3'-untranslated region of the androgen receptor messenger RNA. J Biol Chem 277: pp. 27183-27192
    80. Kojima, K, Fujita, Y, Nozawa, Y, Deguchi, T, Ito, M (2010) MiR-34a attenuates paclitaxel-resistance of hormone-refractory prostate cancer PC3 cells through direct and indirect mechanisms. Prostate 70: pp. 1501-1512
    81. Yamamura, S, Saini, S, Majid, S, Hirata, H, Ueno, K, Deng, G, Dahiya, R (2012) MicroRNA-34a modulates c-Myc transcriptional complexes to suppress malignancy in human prostate cancer cells. PLoS One 7: pp. e29722
    82. Carver, BS, Tran, J, Gopalan, A, Chen, Z, Shaikh, S, Carracedo, A, Alimonti, A, Nardella, C, Varmeh, S, Scardino, PT, Cordon-Cardo, C, Gerald, W, Pandolfi, PP (2009) Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet 41: pp. 619-624
    83. Cai, J, Kandagatla, P, Singareddy, R, Kropinski, A, Sheng, S, Cher, ML, Chinni, SR (2010) Androgens induce functional CXCR4 through ERG factor expression in TMPRSS2-ERG fusion-positive prostate cancer cells. Transl Oncol 3: pp. 195-203
    84. Bao, W, Fu, HJ, Xie, QS, Wang, L, Zhang, R, Guo, ZY, Zhao, J, Meng, YL, Ren, XL, Wang, T, Li, Q, Jin, BQ, Yao, LB, Wang, RA, Fan, DM, Chen, SY, Jia, LT, Yang, AG (2011) HER2 interacts with CD44 to up-regulate CXCR4 via epigenetic silencing of microRNA-139 in gastric cancer cells. Gastroenterology 141: pp. 2076-2087
    85. de Muga, S, Hernandez, S, Salido, M, Lorenzo, M, Agell, L, Juanpere, N, Lorente, JA, Serrano, S, Lloreta, J (2012) CXCR4 mRNA overexpression in high grade prostate tumors: lack of association with TMPRSS2-ERG rearrangement. Cancer Biomark 12: pp. 21-30
    86. Fletcher, CE, Dart, DA, Sita-Lumsden, A, Cheng, H, Rennie, PS, Bevan, CL (2012) Androgen-regulated processing of the oncomir miR-27a, which targets Prohibitin in prostate cancer. Hum Mol Genet 21: pp. 3112-3127
    87. Sikand, K, Slaibi, JE, Singh, R, Slane, SD, Shukla, GC (2011) miR 488* inhibits androgen receptor expression in prostate carcinoma cells. Int J Cancer 129: pp. 810-819
    88. Nadiminty, N, Tummala, R, Lou, W, Zhu, Y, Zhang, J, Chen, X, eVere White, RW, Kung, HJ, Evans, CP, Gao, AC (2012) MicroRNA let-7c suppresses androgen receptor expression and activity via regulation of Myc expression in prostate cancer cells. J Biol Chem 287: pp. 1527-1537
    89. Tao, J, Wu, D, Xu, B, Qian, W, Li, P, Lu, Q, Yin, C, Zhang, W (2012) microRNA-133 inhibits cell proliferation, migration and invasion in prostate cancer cells by targeting the epidermal growth factor receptor. Oncol Rep 27: pp. 1967-1975
    90. Boll, K, Reiche, K, Kasack, K, Morbt, N, Kretzschmar, AK, Tomm, JM, Verhaegh, G, Schalken, J, von Bergen, M, Horn, F, Hackermuller, J (2013) MiR-130a, miR-203 and miR-205 jointly repress key oncogenic pathways and are downregulated in prostate carcinoma. Oncogene 32: pp. 277-285
    91. Li, Y, Kong, D, Ahmad, A, Bao, B, Dyson, G, Sarkar, FH (2012) Epigenetic deregulation of miR-29a and miR-1256 by isoflavone contributes to the inhibition of prostate cancer cell growth and invasion. Epigenetics 7: pp. 940-949
    92. Miyajima, N, Maruyama, S, Bohgaki, M, Kano, S, Shigemura, M, Shinohara, N, Nonomura, K, Hatakeyama, S (2008) TRIM68 regulates ligand-dependent transcription of androgen receptor in prostate cancer cells. Cancer Res 68: pp. 3486-3494
    93. Barboro, P, Repaci, E, Ferrari, N, Rubagotti, A, Boccardo, F, Balbi, C (2011) Androgen receptor and heterogeneous nuclear ribonucleoprotein K colocalize in the nucleoplasm and are modulated by bicalutamide and 4-hydroxy-tamoxifen in prostatic cancer cell lines. Prostate 71: pp. 1466-1479
    94. Mukhopadhyay, NK, Kim, J, Cinar, B, Ramachandran, A, Hager, MH, Di Vizio, D, Adam, RM, Rubin, MA, Raychaudhuri, P, De Benedetti, A, Freeman, MR (2009) Heterogeneous nuclear ribonucleoprotein K is a novel regulator of androgen receptor translation. Cancer Res 69: pp. 2210-2218
    95. Szczyrba, J, Nolte, E, Hart, M, Doll, C, Wach, S, Taubert, H, Keck, B, Kremmer, E, Stohr, R, Hartmann, A, Wieland, W, Wullich, B, Grasser, FA (2013) Identification of ZNF217, hnRNP-K, VEGF-A and IPO7 as targets for microRNAs that are downregulated in prostate carcinoma. Int J Cancer 132: pp. 775-784
    96. Saini, S, Majid, S, Shahryari, V, Arora, S, Yamamura, S, Chang, I, Zaman, MS, Deng, G, Tanaka, Y, Dahiya, R (2012) miRNA-708 control of CD44(+) prostate cancer-initiating cells. Cancer Res 72: pp. 3618-3630
    97. Zhang, BG, Li, JF, Yu, BQ, Zhu, ZG, Liu, BY, Yan, M (2012) microRNA-21 promotes tumor proliferation and invasion in gastric cancer by targeting PTEN. Oncol Rep 27: pp. 1019-1026
    98. Chun-Zhi, Z, Lei, H, An-Ling, Z, Yan-Chao, F, Xiao, Y, Guang-Xiu, W, Zhi-Fan, J, Pei-Yu, P, Qing-Yu, Z, Chun-Sheng, K (2010) MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN. BMC Cancer 10: pp. 367
    99. Fu, X, Tian, J, Zhang, L, Chen, Y, Hao, Q (2012) Involvement of microRNA-93, a new regulator of PTEN/Akt signaling pathway, in regulation of chemotherapeutic drug cisplatin chemosensitivity in ovarian cancer cells. FEBS Lett 586: pp. 1279-1286
    100. Fornari, F, Milazzo, M, Chieco, P, Negrini, M, Marasco, E, Capranico, G, Mantovani, V, Marinello, J, Sabbioni, S, Callegari, E, Cescon, M, Ravaioli, M, Croce, CM, Bolondi, L, Gramantieri, L (2012) In hepatocellular carcinoma miR-519d is up-regulated by p53 and DNA hypomethylation and targets CDKN1A/p21, PTEN, AKT3 and TIMP2. J Pathol 227: pp. 275-285
    101. Wang, YS, Wang, YH, Xia, HP, Zhou, SW, Schmid-Bindert, G, Zhou, CC (2012) MicroRNA-214 regulates the acquired resistance to gefitinib via the PTEN/AKT pathway in EGFR-mutant cell lines. Asian Pac J Cancer Prev 13: pp. 255-260
    102. Wu, Z, He, B, He, J, Mao, X (2013) Upregulation of miR-153 promotes cell proliferation via downregulation of the PTEN tumor suppressor gene in human prostate cancer. Prostate 73: pp. 596-604
    103. Liu, LZ, Li, C, Chen, Q, Jing, Y, Carpenter, R, Jiang, Y, Kung, HF, Lai, L, Jiang, BH (2011) MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1alpha expression. PLoS One 6: pp. e19139
    104. Dhar, S, Hicks, C, Levenson, AS (2011) Resveratrol and prostate cancer: promising role for microRNAs. Mol Nutr Food Res 55: pp. 1219-1229
    105. Varambally, S, Cao, Q, Mani, RS, Shankar, S, Wang, X, Ateeq, B, Laxman, B, Cao, X, Jing, X, Ramnarayanan, K, Brenner, JC, Yu, J, Kim, JH, Han, B, Tan, P, Kumar-Sinha, C, Lonigro, RJ, Palanisamy, N, Maher, CA, Chinnaiyan, AM (2008) Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322: pp. 1695-1699
    106. Kong, D, Heath, E, Chen, W, Cher, ML, Powell, I, Heilbrun, L, Li, Y, Ali, S, Sethi, S, Hassan, O, Hwang, C, Gupta, N, Chitale, D, Sakr, WA, Menon, M, Sarkar, FH (2012) Loss of let-7 up-regulates EZH2 in prostate cancer consistent with the acquisition of cancer stem cell signatures that are attenuated by BR-DIM. PLoS One 7: pp. e33729
    107. Coskun, E, von der Heide, EK, Schlee, C, Kuhnl, A, Gokbuget, N, Hoelzer, D, Hofmann, WK, Thiel, E, Baldus, CD (2011) The role of microRNA-196a and microRNA-196b as ERG regulators in acute myeloid leukemia and acute T-lymphoblastic leukemia. Leuk Res 35: pp. 208-213
    108. Ketola, K, Kallioniemi, O, Iljin, K (2012) Chemical biology drug sensitivity screen identifies sunitinib as synergistic agent with disulfiram in prostate cancer cells. PLoS One 7: pp. e51470
    109. Shao, L, Tekedereli, I, Wang, J, Yuca, E, Tsang, S, Sood, A, Lopez-Berestein, G, Ozpolat, B, Ittmann, M (2012) Highly specific targeting of the TMPRSS2/ERG fusion gene using liposomal nanovectors. Clin Cancer Res 18: pp. 6648-6657
    110. Thangapazham, RL, Shaheduzzaman, S, Kim, KH, Passi, N, Tadese, A, Vahey, M, Dobi, A, Srivastava, S, Maheshwari, RK (2008) Androgen responsive and refractory prostate cancer cells exhibit distinct curcumin regulated transcriptome. Cancer Biol Ther 7: pp. 1427-1435
    111. Rahim, S, Beauchamp, EM, Kong, Y, Brown, ML, Toretsky, JA, Uren, A (2011) YK-4-279 inhibits ERG and ETV1 mediated prostate cancer cell invasion. PLoS One 6: pp. e19343
    112. Xu, D, Lin, TH, Li, S, Da, J, Wen, XQ, Ding, J, Chang, C, Yeh, S (2012) Cryptotanshinone suppresses androgen receptor-mediated growth in androgen dependent and castration resistant prostate cancer cells. Cancer Lett 316: pp. 11-22
    113. Fortson, WS, Kayarthodi, S, Fujimura, Y, Xu, H, Matthews, R, Grizzle, WE, Rao, VN, Bhat, GK, Reddy, ES (2011) Histone deacetylase inhibitors, valproic acid and trichostatin-A induce apoptosis and affect acetylation status of p53 in ERG-positive prostate cancer cells. Int J Oncol 39: pp. 111-119
    114. Bjorkman, M, Iljin, K, Halonen, P, Sara, H, Kaivanto, E, Nees, M, Kallioniemi, OP (2008) Defining the molecular action of HDAC inhibitors and synergism with androgen deprivation in ERG-positive prostate cancer. Int J Cancer 123: pp. 2774-2781
    115. Chatterjee, P, Choudhary, GS, Sharma, A, Singh, K, Heston, WD, Ciezki, J, Klein, EA, Almasan, A (2013) PARP inhibition sensitizes to low dose-rate radiation TMPRSS2-ERG fusion gene-expressing and PTEN-deficient prostate cancer cells. PLoS One 8: pp. e60408
    116. Shao, L, Zhou, Z, Cai, Y, Castro, P, Dakhov, O, Shi, P, Bai, Y, Ji, H, Shen, W, Wang, J (2013) Celastrol suppresses tumor cell growth through targeting an AR-ERG-NF-kappaB pathway in TMPRSS2/ERG fusion gene expressing prostate cancer. PLoS One 8: pp. e58391
    117. Wang, S, Kollipara, RK, Srivastava, N, Li, R, Ravindranathan, P, Hernandez, E, Freeman, E, Humphries, CG, Kapur, P, Lotan, Y, Fazli, L, Gleave, ME, Plymate, SR, Raj, GV, Hsieh, JT, Kittler, R (2014) Ablation of the oncogenic transcription factor ERG by deubiquitinase inhibition in prostate cancer. Proc Natl Acad Sci U S A.
    118. Farooqi, AA, Rana, A, Riaz, AM, Khan, A, Ali, M, Javed, S, Mukhtar, S, Minhaj, S, Rao, JR, Rajpoot, J, Amber, R, Javed, FA, Waqar Un, N, Khanum, R, Bhatti, S (2012) NutriTRAILomics in prostate cancer: time to have two strings to one's bow. Mol Biol Rep 39: pp. 4909-4914
    119. Farooqi, AA, Butt, G, Razzaq, Z (2012) Algae extracts and methyl jasmonate anti-cancer activities in prostate cancer: choreographers of 'the dance macabre'. Cancer Cell Int 12: pp. 50
    120. Farooqi, AA, Bhatti, S, Ismail, M (2012) TRAIL and vitamins: opting for keys to castle of cancer proteome instead of open sesame. Cancer Cell Int 12: pp. 22
    121. Wang, D, Lu, J, Tindall, DJ (2013) Androgens regulate TRAIL-induced cell death in prostate cancer cells via multiple mechanisms. Cancer Lett 335: pp. 136-144
    122. Taghiyev, AF, Guseva, NV, Sturm, MT, Rokhlin, OW, Cohen, MB (2005) Trichostatin A (TSA) sensitizes the human prostatic cancer cell line DU145 to death receptor ligands treatment. Cancer Biol Ther 4: pp. 382-390
    123. Kasman, L, Lu, P, Voelkel-Johnson, C (2007) The histone deacetylase inhibitors depsipeptide and MS-275, enhance TRAIL gene therapy of LNCaP prostate cancer cells without adverse effects in normal prostate epithelial cells. Cancer Gene Ther 14: pp. 327-334
    124. Lakshmikanthan, V, Kaddour-Djebbar, I, Lewis, RW, Kumar, MV (2006) SAHA-sensitized prostate cancer cells to TNFalpha-related apoptosis-inducing ligand (TRAIL): mechanisms leading to synergistic apoptosis. Int J Cancer 119: pp. 221-228
    125. Welch, CM, Elliott, H, Danuser, G, Hahn, KM (2011) Imaging the coordination of multiple signalling activities in living cells. Nat Rev Mol Cell Biol 12: pp. 749-756
  • 刊物主题:Cancer Research; Cell Biology;
  • 出版者:BioMed Central
  • ISSN:1475-2867
文摘
Prostate cancer is a gland tumor in the male reproductive system. It is a multifaceted and genomically complex disease. Transmembrane protease, serine 2 and v-ets erythroblastosis virus E26 homolog (TMPRSS2-ERG) gene fusions are the common molecular signature of prostate cancer. Although tremendous advances have been made in unraveling various facets of TMPRSS2-ERG-positive prostate cancer, many research findings must be sequentially collected and re-interpreted. It is important to understand the activation or repression of target genes and proteins in response to various stimuli and the assembly in signal transduction in TMPRSS2-ERG fusion-positive prostate cancer cells. Accordingly, we divide this multi-component review ofprostate cancer cells into several segments: 1) The role of TMPRSS2-ERG fusion in genomic instability and methylated regulation in prostate cancer and normal cells; 2) Signal transduction cascades in TMPRSS2-ERG fusion-positive prostate cancer; 3) Overexpressed genes in TMPRSS2-ERG fusion-positive prostate cancer cells; 4) miRNA mediated regulation of the androgen receptor (AR) and its associated protein network; 5) Quantitative control of ERG in prostate cancer cells; 6) TMPRSS2-ERG encoded protein targeting; In conclusion, we provide a detailed understanding of TMPRSS2-ERG fusion related information in prostate cancer development to provide a rationale for exploring TMPRSS2-ERG fusion-mediated molecular network machinery.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700