用户名: 密码: 验证码:
The occurrence of defensive alkaloids in non-integumentary tissues of the Brazilian red-belly toad Melanophryniscus simplex (Bufonidae)
详细信息    查看全文
  • 作者:Taran Grant (1)
    Patrick Colombo (2)
    Laura Verrastro (3)
    Ralph A. Saporito (4) ralph.saporito@gmail.com
  • 关键词:Anura – ; Amphibia – ; Chemical defense – ; Sequestration
  • 刊名:Chemoecology
  • 出版年:2012
  • 出版时间:September 2012
  • 年:2012
  • 卷:22
  • 期:3
  • 页码:169-178
  • 全文大小:428.7 KB
  • 参考文献:1. Brodie ED Jr, Formanowicz DR Jr, Brodie ED III (1991) Predator avoidance and antipredator mechanisms: distinct pathways to survival. Ethol Ecol Evol 3:73–77
    2. Conlon JM (2011) The contribution of skin antimicrobial peptides to the system of innate immunity in anurans. Cell Tissue Res 343:201–212. doi:
    3. Daly JW (1995) The chemistry of poisons in amphibian skin. Proc Nat Acad Sci USA 92:9–13
    4. Daly JW, Myers CW, Warnick JE, Albuquerque EX (1980) Levels of batrachotoxin and lack of sensitivity to its action in poison-dart frogs (Phyllobates). Science 208:1383–1385
    5. Daly JW, Highet RJ, Myers CW (1984) Occurrence of skin alkaloids in non-dendrobatid frogs from Brazil (Bufonidae), Australia (Myobatrachidae) and Madagascar (Mantellinae). Toxicon 22:905–919. doi:
    6. Daly JW, Secunda SI, Garraffo HM, Spande TF, Wisnieski A, Cover JF Jr (1994) An uptake system for dietary alkaloids in poison frogs (Dendrobatidae). Toxicon 32:657–663. doi:
    7. Daly JW, Garraffo HM, Spande TF (1999) Alkaloids from amphibian skins. In: Pelletier SW (ed) Alkaloids: Chemical and biological perspectives Volume 13. Pergamon, New York, pp 1–161
    8. Daly JW, Kaneko T, Wilham JM, Garraffo HM, Spande TF, Espinosa A, Donnelly MA (2002) Bioactive alkaloids of frog skin: combinatorial bioprospecting reveals that pumiliotoxins have an arthropod source. Proc Nat Acad Sci USA 99:13996–14001. doi:
    9. Daly JW, Spande TF, Garraffo HM (2005) Alkaloids from amphibian skin: a tabulation of over eight-hundred compounds. J Nat Prod 68:1556–1575. doi:
    10. Daly JW, Wilham JM, Spande TF, Garraffo HM, Gil R, Silva G, Vaira M (2007) Alkaloids in bufonid toads (Melanophryniscus): Temporal and geographic determinants for two Argentinian species. J Chem Ecol 33:871–887. doi:
    11. Daly JW, Garraffo HM, Spande TF, Yeh HJC, Peltzer PM, Cacivio PM, Baldo JD, Faivovich J (2008) Indolizidine 239Q and quinolizidine 275I. Major alkaloids in two Argentinian bufonid toads (Melanophryniscus). Toxicon 52:858–870. doi:
    12. Dumbacher JP, Menon GK, Daly JW (2009) Skin as a toxin storage organ in the endemic New Guinean genus Pitohui. Auk 126:520–530. doi:
    13. Feldman CR, Brodie ED Jr, Brodie ED III, Pfrender ME (2009) The evolutionary origins of beneficial alleles during the repeated adaptation of garter snakes to deadly prey. Proc Nat Acad Sci USA 106:13415–13420. doi:
    14. Fern谩ndez K (1926) Sobre la biolog铆a y reproducci贸n de algunos batracios argentinos (segunda parte). Bol Acad Nac Cienc C贸rdoba 29:271–320
    15. Flier J, Edwards MW, Daly JW, Myers CW (1980) Widespread occurrence in frogs and toads of skin compounds interacting with the Ouabain site of Na+, K+-ATPase. Science 208:503–505
    16. Frost DR (2011) Amphibian species of the world: an online reference. Version 5.5 (31 January 2011). Electronic Database accessible at http://research.amnh.org/herpetology/amphibia/index.php. American Museum of Natural History, New York
    17. Garraffo HM, Spande TF, Daly JW, Baldessari A, Gros EG (1993) Alkaloids from bufonid toads (Melanophryniscus): decahydroquinolines, pumiliotoxins and homopumiliotoxins, indolizidines, pyrrolizidines, and quinolizidines. J Nat Prod 56:357–373. doi:
    18. Geffeney SL, Ruben PC (2006) The structural basis and functional consequences of interactions between tetrodotoxin and voltage-gated sodium channels. Mar Drugs 4:143–156. doi:
    19. Geffeney SL, Fujimoto E, Brodie ED III, Brodie ED Jr, Ruben PC (2005) Evolutionary diversification of TTX-resistant sodium channels in a predator–prey interaction. Nature 434:759–763. doi:
    20. Grant T, Frost DR, Caldwell JP, Gagliardo R, Haddad CFB, Kok PJR, Means BD, Noonan BP, Schargel WE, Wheeler WC (2006) Phylogenetic systematics of dart-poison frogs and their relatives (Anura: Athesphatanura: Dendrobatidae). Bull Am Mus Nat Hist 299:1–262. URI:hdl.handle.net/2246/5803
    21. Hanifin CT, Brodie ED III, Brodie ED Jr (2003) Tetrodotoxin levels in eggs of the rough-skinned newt, Taricha granulosa, are correlated with female toxicity. J Chem Ecol 29:1729–1739. doi:
    22. Mebs D, Pogoda W (2005) Variability of alkaloids in the skin secretion of the European fire salamander (Salamandra salamadra terrestris). Toxicon 45:603–606
    23. Mebs D, Pogoda W, Maneyro R, Kwet A (2005) Studies on the poisonous skin secretion of individual red bellied toads, Melanophryniscus montevidensis (Anura, Bufonidae), from Uruguay. Toxicon 46:641–650. doi:
    24. Mebs D, Maneyro R, Pogoda W (2007) Further studies on pumiliotoxin 251D and hydroquinone content of the skin secretion of Melanophryniscus species (Anura, Bufonidae) from Uruguay. Toxicon 50:166–169. doi:
    25. Mebs D, Arakawa O, Yotsu-Yamashita M (2010) Tissue distribution of tetrodotoxin in the red-spotted newt Notophthalmus viridescens. Toxicon 55:1353–1357. doi:
    26. Myers CW, Daly JW, Malkin B (1978) A dangerously toxic new frog (Phyllobates) used by Ember谩 indians of western Colombia, with discussion of blowgun fabrication and dart poisoning. Bull Am Mus Nat Hist 161:307–366. URI://hdl.handle.net/2246/1286
    27. Noguchi T, Arakawa O (2008) Tetrodotoxin—distribution and accumulation in aquatic organisms, and cases of human intoxication. Mar Drugs 6:220–242. doi:
    28. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51:933–938. doi:
    29. Raspotnig G, Norton RA, Heethoff M (2011) Oribatid mites and skin alkaloids in poison frogs oribatid mites and skin alkaloids in poison frogs. Biol Lett 7:555–556. doi:
    30. Rivas L, Luque-Ortega JR, Andreu D (2009) Amphibian antimicrobial peptides and protozoa: lessons from parasites. BBA Biomemb 1788:1570–1581. doi:
    31. Rodr铆guez A, Poth D, Schulz S, Vences M (2010) Discovery of skin alkaloids in a miniaturized eleutherodactylid frog from Cuba. Biol Lett 7:414–418. doi:
    32. Santos RR, Grant T (2011) Diel pattern of migration in a poisonous toad from Brazil and the evolution of chemical defenses in diurnal amphibians. Evol Ecol 25:249–258. doi:
    33. Saporito RA, Spande TF, Garraffo HM, Donnelly MA (2009) Arthropod alkaloids in poison frogs: a review of the ‘dietary hypothesis’. Heterocycles 79:277–297. doi:
    34. Saporito RA, Donnelly MA, Madden AA, Garraffo HM, Spande TF (2010) Sex-related differences in alkaloid chemical defenses of the dendrobatid frog Oophaga pumilio from Cayo Nancy, Bocas del Toro, Panama. J Nat Prod 73:317–321. doi:
    35. Saporito RA, Donnelly MA, Spande TF, Garraffo HM (2011) A review of chemical ecology in poison frogs. Chemoecology. doi:10.1007/s00049-011-0088-0
    36. Toledo RC, Jared C (1995) Cutaneous granular glands and amphibian venoms. Comp Biochem Physiol A Mol Integr Physiol 111:1–29. doi:10.1016/0300-9629(95)98515-I
    37. Williams BL, Brodie ED Jr, Brodie ED III (2004) A resistant predator and its toxic prey: persistence of newt toxin leads to poisonous (not venomous) snakes. J Chem Ecol 30:1901–1919. doi:
  • 作者单位:1. Departamento de Zoologia, Instituto de Bioci锚ncias, Universidade de S茫o Paulo, C.P. 11461, S茫o Paulo, SP 05422-970, Brazil2. Laborat贸rio de Sistem谩tica de Vertebrados, Faculdade de Bioci锚ncias, Pontif铆cia Universidade Cat贸lica do Rio Grande do Sul, Avenida Ipiranga 6681, Porto Alegre, RS 90619-900, Brazil3. Laborat贸rio de Herpetologia, Departamento de Zoologia, Instituto de Bioci锚ncias, Universidade Federal do Rio Grande do Sul, Avenida Bento Gon莽alves 9500, Porto Alegre, RS 91540-000, Brazil4. Department of Biology, John Carroll University, University Heights, Ohio, 44118 USA
  • ISSN:1423-0445
文摘
The red-belly toads (Melanophryniscus) of southern South America secrete defensive alkaloids from dermal granular glands. To date, all information on Melanophryniscus alkaloids has been obtained by extraction from either skins or whole organisms; however, in other amphibians, tetrodotoxins, samandarines, and bufadienolides have been detected in both skin and other organs, which raise the possibility that lipophilic alkaloids may occur in non-integumentary tissues in Melanophryniscus as well. To test this hypothesis, we studied the distribution of alkaloids in the skin, skeletal muscle, liver, and mature oocytes of the red-belly toad M. simplex from three localities in southern Brazil. Gas chromatography and mass spectrometry of skin extracts from 11 individuals of M. simplex resulted in the detection of 47 alkaloids (including isomers), 9 unclassified and 38 from 12 known structural classes. Each alkaloid that was present in the skin of an individual was also present in the same relative proportion in that individual’s skeletal muscle, liver, and oocytes. The most abundant and widely distributed alkaloids were the pumiliotoxins 251D, 267C, and 323A, 5,8-disubstituted indolizidines 207A and 223D, 5,6,8-trisubstituted indolizidine 231B, 3,5-disubstituted pyrrolizidines cis-223B and cis- and trans-251K, and izidine 211C. We report the first record of piperidines in Melanophryniscus, bringing the total number of alkaloid classes detected in this genus to 16. Alkaloid composition differed significantly among the three study sites. The functional significance of defensive chemicals in non-integumentary tissues is unknown.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700