用户名: 密码: 验证码:
Fracture in metallic glasses: mechanics and mechanisms
详细信息    查看全文
  • 作者:R. Narasimhan (1)
    Parag Tandaiya (2)
    I. Singh (1)
    R. L. Narayan (3)
    U. Ramamurty (3) (4)

    1. Department of Mechanical Engineering
    ; Indian Institute of Science ; Bangalore ; 560012 ; India
    2. Department of Mechanical Engineering
    ; Indian Institute of Technology-Bombay ; Mumbai ; 400076 ; India
    3. Department of Materials Engineering
    ; Indian Institute of Science ; Bangalore ; 560012 ; India
    4. Center of Excellence for Advanced Materials Research
    ; King Abdulaziz University ; Jeddah ; 21589 ; Saudi Arabia
  • 关键词:Metallic glasses ; Crack tip fields ; Vein patterns ; Shear bands ; Nanocorrugations ; Cavitation
  • 刊名:International Journal of Fracture
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:191
  • 期:1-2
  • 页码:53-75
  • 全文大小:5,188 KB
  • 参考文献:1. Adibi, S, Sha, ZD, Branicio, PS, Joshi, SP, Liu, ZS, Zhang, YW (2013) A transition from localized shear banding to homogeneous superplastic flow in nanoglass. Appl Phys lett 103: pp. 211905
    2. Adibi, S, Branicio, PS, Zhang, YW, Joshi, SP (2014) Composition and grain size effects on the structural and mechanical properties of cuzr nanoglasses. J Appl Phys 116: pp. 043522
    3. Albe, K, Ritter, Y, Sopu, D (2013) Enhancing the plasticity of metallic glasses: shear band formation, nanocomposites and nanoglasses investigated by molecular dynamics simulations. Mech Mater 67: pp. 94-103
    4. Anand, L, Su, C (2005) A theory for amorphous viscoplastic materials undergoing finite deformations, with application to metallic glasses. J Mech Phys Solids 53: pp. 1362-1396
    5. Argon, AS (1979) Plastic deformation in metallic glasses. Acta Metall 27: pp. 47-58
    6. Argon, AS, Salama, M (1976) The mechanism of fracture in glassy materials capable of some inelastic deformation. Mater Sci Eng 23: pp. 219-230
    7. Bhowmick, R, Raghavan, R, Chattopadhyay, K, Ramamurty, U (2006) Plastic flow softening in a bulk metallic glass. Acta Mater 54: pp. 4221-4228
    8. Chen, DZ, Jang, D, Guan, KM, An, Q, Goddard, WA, Greer, JR (2013) Nanometallic glasses: size reduction brings ductility, surface state drives its extent. Nano Lett 13: pp. 4462-4468
    9. Chen N, Louzguine-Luzgin DV, Xie GQ, Inoue A (2009) Nanoscale wavy fracture surface of a Pd-based bulk metallic glass. Appl Phys Lett 94:131906
    10. Chen, N, Louzguine-Luzgin, DV, Xie, GQ, Sharma, P, Perepezko, JH, Esashi, M, Yavari, AR, Inoue, A (2013) Structural investigation and mechanical properties of a representative of a new class of materials: nanograined metallic glasses. Nanotechnol 24: pp. 045610
    11. Choi-Yim, H, Johnson, WL (1997) Bulk metallic glass matrix composites. Appl Phys Lett 71: pp. 3808-3810
    12. Choi-Yim H, Busch R, K枚ster U, Johnson W (1999) Synthesis and characterization of particulate reinforced \({\rm Zr}_{57}{\rm Nb}_{5}{\rm Al}_{10}{\rm Cu}_{15.4}{\rm Ni}_{12.6}\) bulk metallic glass composites. Acta Mater 47:2455鈥?462
    13. Chu, Z, Yuan, G, Kato, H (2014) The effect of matrix fracture toughness on the plastic deformation of the metallic glassy composite. J Alloys Compd 612: pp. 10-15
    14. Conner, RD, Rosakis, AJ, Johnson, WL, Owen, DM (1997) Fracture toughness determination for a beryllium-bearing bulk metallic glass. Scr Mater 37: pp. 1373-1378
    15. De Hey P, Sietsma J, van den Beukel A (1998) Structural disordering in amorphous \({\rm Pd}_{40}{\rm Ni}_{40}{\rm P}_{20}\) induced by high temperature deformation. Acta Mater 46:5873鈥?882
    16. Donovan, P (1989) A yield criterion for pd40ni40p20 metallic glass. Acta Metall 37: pp. 445-456
    17. Duine PA, Sietsma J, van den Beukel A (1992) Defect production and annihilation near equilibrium in amorphous \({\rm Pd}_{40}{\rm Ni}_{40}{\rm P}_{20}\) investigated from viscosity data. Acta Metal Mater 40:743鈥?51
    18. Eckert, J, Schlorke-de Boer, N (1999) Mechanically alloyed Mg-based metallic glasses and metallic glass composites containing nanocrystalline particles. Zeitschrift f眉r Metallkunde 90: pp. 908-913
    19. Falk, ML (1999) Molecular-dynamics study of ductile and brittle fracture in model noncrystalline solids. Phys Rev B 60: pp. 7062-7070
    20. Fang JX, Vainio U, Puff W, Wurschum R, Wang XL, Wang D, Ghafari M, Jiang F, Sun J, Hahn H, Gleiter H (2012) Atomic structure and structural stability of \({\rm Sc}_{75}{\rm Fe}_{25}\) nanoglasses. Nano Lett 12:458鈥?63
    21. Flores, KM, Dauskardt, RH (1999) Enhanced toughness due to stable crack tip damage zones in bulk metallic glass. Scr Mater 41: pp. 937-943
    22. Flores, KM, Dauskardt, RH (2006) Mode II fracture behavior of a Zr-based bulk metallic glass. J Mech Phys Solids 54: pp. 2418-2435
    23. Fu, XL, Li, Y, Schuh, CA (2007) Temperature, strain rate and reinforcement volume fraction dependence of plastic deformation in metallic glass matrix composites. Acta Mater 55: pp. 3059-3071
    24. Gao, H (1993) Surface roughening and branching instabilities in dynamic fracture. J Mech Phys Solids 41: pp. 457-486
    25. Gilbert, CJ, Ritchie, RO, Johnson, WL (1997) Fracture toughness and fatigue-crack propagation in a ZrTiNiCuBe bulk metallic glass. Appl Phys Lett 71: pp. 476-478
    26. Greer AL, Ma E (2007) Bulk metallic glasses: at the cutting edge of metals research. MRS Bull 32: 611鈥?19
    27. Gu, XJ, Poon, SJ, Shiflet, GJ, Lewandowski, JJ (2009) Ductile-to-brittle transition in a Ti-based bulk metallic glass. Scr Mater 60: pp. 1027-1030
    28. Guin, JP, Widerhorn, SM (2004) Fracture of silicate glasses : ductile or brittle. Phys Rev Lett 92: pp. 215502
    29. Guo, H, Yan, PF, Wang, YB, Tan, J, Zhang, ZF, Sui, ML, Ma, E (2007) Tensile ductility and necking of metallic glass. Nat Mater 6: pp. 735-739
    30. Hasan, HA, Kecskes, L, Lewandowski, J (2008) Effects of changes in test temperature and loading conditions on fracture toughness of a Zr-based bulk metallic glass. Metall Mater Trans A 39A: pp. 2077-2085
    31. Hays, CC, Kim, CP, Johnson, WL (2000) Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys Rev Lett 84: pp. 2901
    32. Henann, LD, Anand, L (2009) Fracture of metallic glasses at notches: effects of notch-root radius and the ratio of the elastic shear modulus to the bulk modulus on toughness. Acta Mater 57: pp. 6057-6074
    33. Hofmann, DC, Suh, J-Y, Wiest, A (2008) Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451: pp. 1085-1089
    34. Hofmann, DC, Suh, J-Y, Wiest, A, Johnson, W (2008) New processing possibilities for highly toughened metallic glass matrix composites with tensile ductility. Scr Mater 59: pp. 684-687
    35. Horgan, CO, Abeyaratne, R (1986) A bifurcation problem for a compressible nonlinearly elastic medium: growth of a micro-void. J Elast 16: pp. 189-200
    36. Horgan, CO, Pence, TJ (1989) Void nucleation in tensile dead-loading of a composite incompressible nonlinearly elastic sphere. J Elast 21: pp. 61-82
    37. Hou, HS, Abeyaratne, R (1992) Cavitation in elastic and elastic鈥損lastic solids. J Mech Phys Solids 40: pp. 571-592
    38. Huang, Y, Hutchinson, JW, Tvergaard, V (1991) Cavitation instabilities in elasticplastic solids. J Mech Phys Solids 39: pp. 223-241
    39. Hull, D (1996) Influence of stress intensity and crack speed on fracture surface topography: mirror to mist to macroscopic bifurcation. J Mater Sci 31: pp. 1829-1841
    40. Hull, D (1995) The effect of mixed mode I/III on crack evolution in brittle solids. Int J Fract 70: pp. 59-79
    41. Hull, D (1999) Fractography: observing, measuring and interpreting fracture surface topography. Cambridge University Press, Cambridge
    42. Jang, D, Greer, JR (2010) Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Nat Mater 9: pp. 215-219
    43. Jia, P, Zd, Zhu (2009) Notch toughness of cu-based bulk metallic glasses. Scr Mater 61: pp. 137-140
    44. Jiang, MQ, Ling, Z, Meng, JX (2010) Nanoscale periodic corrugation to dimple transition due to 鈥渂eat鈥?in a bulk metallic glass. Scr Mater 62: pp. 572-575
    45. Jiang, MQ, Ling, Z, Meng, JX, Dai, LH (2008) Energy dissipation in fracture of bulk metallic glasses via inherent competition between local softening and quasi-cleavage. Philos Mag 88: pp. 407-426
    46. Jiang, MQ, Meng, JX, Keryvin, V, Dai, LH (2011) Crack branching instability and directional stability in dynamic fracture of a tough bulk metallic glass. Intermetallics 19: pp. 1775-1779
    47. Jing, J, Kramer, A, Birringer, R, Gleiter, H, Gonser, U (1989) Modified atomic structure in a Pd鈥揊e鈥揝i nanoglass: a M枚ssbauer study. J Non-Cryst Solids 113: pp. 167-170
    48. Johnson WL, Samwer K (2005) A universal criterion for plastic yielding of metallic glasses with a \(({\rm T}/{\rm T}_{\rm g})^{2/3}\) temperature dependence. Phys Rev Lett 95:195501
    49. Kai-feng Z, Li X, L X, Xi-feng LI (2007) New fracture morphology of amorphous Fe \(_{78}\) Si \(_{9}\) B \(_{13}\) alloy. Trans Nonferrous Met Soc China 1:383鈥?87
    50. Kawashima A, Kurishita H, Kimura H et al (2005) Fracture Toughness of \({\rm Zr}{\sim } 5{\sim } {\rm 5Al}{\sim } 1{\sim }{\rm 0Ni}{\sim } {\rm 5Cu}{\sim } 3{\sim } \) 0 bulk metallic glass by 3-point bend testing. Mater Trans 46:1725
    51. Keryvin V, Bernard C, Sangleb艙uf J-C et al (2006) Toughness of \({\rm Zr}_{55}{\rm Cu}_{30}{\rm Al}_{10}{\rm Ni}_{5}\) bulk metallic glass for two oxygen levels. J Non Cryst Solids 352:2863鈥?868
    52. Kim, CP, Suh, JY, Wiest, A, Johnson, WL (2009) Fracture toughness study of new Zr-based Be-bearing bulk metallic glasses. Scr Mater 60: pp. 80-83
    53. Klement, W, Willens, RH, Duwez, P (1960) Non-crystalline structure in solidified gold鈥搒ilicon alloys. Nature 187: pp. 869-870
    54. Kumar, G, Rector, D, Conner, RD, Schroers, J (2009) Embrittlement of Zr-based bulk metallic glasses. Acta Mater 57: pp. 3572-3583
    55. Langer, JS (2008) Shear-transformation-zone theory of plastic deformation near the glass transition. Phys Rev E 77: pp. 021502
    56. Launey, ME, Hofmann, DC, Suh, J-Y (2009) Fracture toughness and crack-resistance curve behavior in metallic glass-matrix composites. Appl Phys Lett 94: pp. 241910
    57. Leamy, HJ, Wang, TT, Chen, HS (1972) Plastic flow and fracture of metallic glass. Metall Trans 3: pp. 699-708
    58. Lewandowski, JJ, Gu, XJ, Shamimi, NA, Poon, SJ, Shiflet, GJ (2008) Tough Fe-based bulk metallic glasses. Appl Phys Lett 92: pp. 09198
    59. Lewandowski, JJ, Shazly, M, Nouri, AS (2006) Intrinsic and extrinsic toughening of metallic glasses. Scr Mater 54: pp. 337-341
    60. Lewandowski, JJ, Wang, WH, Greer, AL (2005) Intrinsic plasticity or brittleness of metallic glasses. Philos Mag Lett 85: pp. 77-87
    61. Li HX, Kim KB, Yi S (2007) Enhanced glass-forming ability of Fe-based bulk metallic glasses prepared using hot metal and commercial raw materials through the optimization of Mo content. Scr Mater 56:1035鈥?038
    62. Lowhaphandu, P, Lewandowski, JJ (1998) Fracture toughness and notched toughness of bulk amorphous alloy: Zr-Ti-Ni-Cu-Be. Scr Mater 38: pp. 1811-1817
    63. Lu J, Ravichandran G (2003) Pressure-dependent flow behavior of \({\rm Zr}_{41.2}{\rm Ti}_{13.8}{\rm Cu}_{12.5}{\rm Ni}_{10}{\rm Be}_{22.5}\) bulk metallic glass. J Mater Res 18:2039鈥?049
    64. Lund, AC, Schuh, CA (2003) Yield surface of a simulated metallic glass. Acta Mater 51: pp. 5399-5411
    65. Ma RD, Zhang HF, Yu HS, Hu ZQ (2008) The effect of Al substitution on thermal and mechanical properties of Fe-based bulk metallic glass. J Alloys Compd 454:370鈥?73
    66. Madge SV, Wada T, Louzguine-Luzgin DV, et al (2009) Oxygen embrittlement in a Cu鈥揌f鈥揂l bulk metallic glass. Scr Mater 61:540鈥?43
    67. Magagnosc, DJ, Ehrbar, R, Kumar, G, He, MR, Schroers, J, Gianola, DS (2013) Tunable tensile ductility in metallic glasses. Sci Rep 3: pp. 1096
    68. McMeeking, RM (1977) Finite deformation analysis of crack-tip opening in elastic鈥損lastic materials and implications for fracture. J Mech Phys Solids 25: pp. 357-381
    69. Murali, P, Guo, TF, Zhang, YW, Narasimhan, R, Li, Y, Gao, HJ (2011) Atomic scale fluctuations govern brittle fracture and cavitation behavior in metallic glasses. Phys Rev Lett 107: pp. 215501
    70. Murali, P, Ramamurty, U (2005) Embrittlement of a bulk metallic glass due to sub-Tg annealing. Acta Mater 53: pp. 1467-1478
    71. Nagendra, N, Ramamurty, U, Goh, T, Li, Y (2000) Effect of crystallinity on the impact toughness of a La-based bulk metallic glass. Acta Mater 48: pp. 2603-2615
    72. Narasimhan R, Rosakis AJ (1990) Three-dimensional effects near a crack tip in a ductile three-point bend specimen: Part I鈥攁 numerical investigation. J Appl Mech 57:607鈥?17
    73. Narayan, RL, Tandaiya, P, Narasimhan, R, Ramamurty, U (2014) Wallner lines, crack velocity and mechanisms of crack nucleation and growth in a brittle bulk metallic glass. Acta Mater 80: pp. 407-420
    74. Packard, CE, Franke, O, Homer, ER, Schuh, CA (2010) Nanoscale strength distribution in amorphous versus crystalline metals. J Mater Res 25: pp. 2251-2263
    75. Pampillo, CA (1975) Flow and fracture in amorphous alloys. J Mater Sci 10: pp. 1194-1227
    76. Pan, DG, Zhang, HF, Wang, AM (2007) Fracture instability in brittle Mg-based bulk metallic glasses. J Alloys Compd 438: pp. 145-149
    77. Patnaik, MNM, Narasimhan, R, Ramamurty, U (2004) Spherical indentation response of metallic glasses. Acta Mater 52: pp. 3335-3345
    78. Pugh, SF (1954) Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos Mag 45: pp. 823-843
    79. Qu, RT, Stoica, M, Eckert, J, Zhang, ZF (2010) Tensile fracture morphologies of bulk metallic glass. J Appl Phys 108: pp. 063509
    80. Rabinovitch, A, Frid, V, Bahat, D (2006) Wallner lines revisited. J Appl Phys 99: pp. 076102
    81. Raghavan R, Murali P, Ramamurty U (2006) Ductile to brittle transition in the \({\rm Zr}_{41.2}{\rm Ti}_{13.75}{\rm Cu}_{12.5}{\rm Ni}_{10}{\rm Be}_{22.5}\) bulk metallic glass. Intermetallics 14:1051鈥?054
    82. Ravi-Chandar, K (2004) Dynamic fracture. Elsevier, Amsterdam
    83. Ravi-Chandar, K, Yang, B (1997) On the role of microcracks in the dynamic fracture of brittle materials. J Mech Phys Solids 45: pp. 535-563
    84. Rice, JR, Johnson, MA The role of large crack tip geometry changes in plane strain fracture. In: Kanninen, ME, Adler, WE, Rosenfield, AR, Jaffee, RI eds. (1970) Inelastic behavior of solids. McGraw-Hill, New York, pp. 641-672
    85. Rice JR, Levy N (1969) Local heating by plastic deformation at a crack tip. In: Argon AS (ed) Physics of strength and plasticity. MIT Press, Cambridge. pp 277鈥?93
    86. Rice, JR, Thomson, R (1974) Ductile versus brittle behaviour of crystals. Philos Mag 29: pp. 73-97
    87. Ritter Y, Sopu D, Gleiter H, Albe K (2011) Structure, stability and mechanical properties of internal interfaces in \({\rm Cu}_{64}{\rm Zr}_{36}\) nanoglasses studied by MD simulations. Acta Mater 59:6588鈥?593
    88. Rycroft, CH, Bouchbinder, E (2012) Fracture toughness of metallic glasses: annealing-induced embrittlement. Phys Rev Lett 109: pp. 194301
    89. Saffman, PG, Taylor, G (1958) The penetration of a fluid into a porous medium or Hele鈥揝haw cell containing a more viscous liquid. Proc R Soc Lond A 245: pp. 312-329
    90. Schroers, J, Johnson, WL (2004) Ductile bulk metallic glass. Phys Rev Lett 93: pp. 255506
    91. Schuh, CA, Hufnagel, TC, Ramamurty, U (2007) Mechanical behavior of amorphous alloys. Acta Mater 55: pp. 4067-4109
    92. Sha, ZD, Pei, QX, Sorkin, V, Branicio, PS, Zhang, YW, Gao, H (2013) On the notch sensitivity of cuzr metallic glasses. Appl Phys Lett 103: pp. 081903
    93. Sharon, E, Cohen, G, Fineberg, J (2002) Crack front waves and the dynamics of a rapidly moving crack. Phys Rev Lett 88: pp. 085503
    94. Sha, ZD, He, LC, Pei, QX, Pan, H, Liu, ZS, Zhang, YW, Wang, TJ (2014) On the notch sensitivity of CuZr nanoglass. J Appl Phys 115: pp. 163507
    95. Shen, J, Liang, WZ, Sun, JF (2006) Formation of nanowaves in compressive fracture of a less-brittle bulk metallic glass. Appl Phys Lett 89: pp. 121908
    96. Singh, I, Guo, TF, Murali, P, Narasimhan, R, Zhang, YW, Gao, HJ (2013) Cavitation in materials with distributed weak zones: implications on the origin of brittle fracture in metallic glasses. J Mech Phys Solids 61: pp. 1047-1064
    97. Singh I, Guo TF, Narasimhan R, Zhang YW (2014a) Cavitation in brittle metallic glasses鈥攅ffects of stress state and distributed weak zones. Int J Solids and Struct. doi:10.1016/j.ijsolstr.2014.09.005
    98. Singh I, Narasimhan R (2014) Notch sensitivity in nanoscale metallic glass specimens: insights from continuum simulations, manuscript under preparation for publication
    99. Singh, I, Narasimhan, R, Zhang, YW (2014) Ductility enhancement in nanoglass: role of interaction stress between flow defects. Philos Mag Lett 94: pp. 1-10
    100. Sommer, E (1969) Formation of fracture 鈥渓ances鈥?in glass. Eng Fract Mech 1: pp. 539-546
    101. Sopu, D, Albe, K, Ritter, Y, Gleiter, H (2009) From nanoglasses to bulkmassive glasses. Appl Phys Lett 94: pp. 191911
    102. Sopu, D, Ritter, Y, Gleiter, H, Albe, K (2011) Deformation behavior of bulk and nanostructured metallic glasses studied via molecular dynamics simulations. Phys Rev B Condens Matter Mater Phys 83: pp. 100202
    103. Spaepen, F (1977) A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall 25: pp. 407-415
    104. Suh, J, Conner, R, Kim, C, Demetriou, M, Johnson, W (2010) Correlation between fracture surface morphology and toughness in Zr-based bulk metallic glasses. J Mater Res 25: pp. 982-990
    105. Szuecs F, Kim CPP, Johnson WLL, SZUECST F (2001) Mechanical properties of \({\rm Zr}_{56.2}{\rm Ti}_{13.8}{\rm Nb}_{5.0}{\rm Cu}_{6.9}{\rm Ni}_{5.6}{\rm Be}_{12.5}\) ductile phase reinforced bulk metallic glass composite. Acta Mater 49:1507鈥?513
    106. Tan, J, Zhang, Y, Sun, BA (2011) Correlation between internal states and plasticity in bulk metallic glass. Appl Phys Lett 98: pp. 151906
    107. Tandaiya, P, Narasimhan, R, Ramamurty, U (2007) Mode I crack tip fields in amorphous materials with application to metallic glasses. Acta Mater 55: pp. 6541-6552
    108. Tandaiya, P, Ramamurty, U, Ravichandran, G, Narasimhan, R (2008) Effect of Poisson鈥檚 ratio on crack tip fields and fracture behavior of metallic glasses. Acta Mater 56: pp. 6077-6086
    109. Tandaiya P, Ramamurty U, Narasimhan R (2009) Mixed mode (I and II) crack tip fields in bulk metallic glasses. J Mech Phys Solids 57:1880鈥?897
    110. Tandaiya P, Narasimhan R, Ramamurty U (2013) On the mechanism and the length scales involved in the ductile fracture of a bulk metallic glass. Acta Mater 61:1558鈥?570
    111. Thamburaja, P (2011) Length scale effects on the shear localization process in metallic glasses: a theoretical and computational study. J Mech Phys Solids 59: pp. 1552-1575
    112. Tian, L, Cheng, YQ, Shan, ZW, Li, J, Wang, CC, Han, XD, Sun, J, Ma, E (2012) Approaching the ideal elastic limit of metallic glasses. Nat Commun 3: pp. 609
    113. Trexler, MM, Thadhani, NN (2010) Mechanical properties of bulk metallic glasses. Prog Mater Sci 55: pp. 759-839
    114. Varadarajan, R, Thurston, A, Lewandowski, J (2010) Increased toughness of zirconium-based bulk metallic glasses tested under mixed mode conditions. Metall Mater Trans A 41A: pp. 149-158
    115. Varias, AG, Suo, Z, Shih, CF (1991) Ductile failure of a constrained metal foil. J Mech Phys Solids 39: pp. 963-986
    116. Wang, G, Chan, KC, Xu, XH, Wang, WH (2008) Instability of crack propagation in brittle bulk metallic glass. Acta Mater 56: pp. 5845-5860
    117. Wang, G, Wang, YT, Liu, YH (2006) Evolution of nanoscale morphology on fracture surface of brittle metallic glass. Appl Phys Lett 89: pp. 121909
    118. Wang, G, Zhao, DQ, Bai, HY (2007) Nanoscale periodic morphologies on the fracture surface of brittle metallic glasses. Phys Rev Lett 98: pp. 235501
    119. Wang, H (2005) Bulk metallic glass composites. J Mater Sci Technol 21: pp. 86-90
    120. Wang, YT, Xi, XK, Wang, G (2009) Understanding of nanoscale periodic stripes on fracture surface of metallic glasses. J Appl Phys 106: pp. 113528
    121. Xi, XK, Zhao, DQ, Pan, MX (2005) Fracture of brittle metallic glasses: brittleness or plasticity. Phys Rev Lett 94: pp. 125510
    122. Xi, XK, Zhao, DQ, Pan, MX (2006) Periodic corrugation on dynamic fracture surface in brittle bulk metallic glass. Appl Phys Lett 89: pp. 18191
    123. Xia, XX, Wang, WH (2012) Characterization and modeling of breaking-induced spontaneous nanoscale periodic stripes in metallic glasses. Small 8: pp. 1197-1203
    124. Xu, J, Ramamurty, U, Ma, E (2010) The fracture toughness of bulk metallic glasses. JOM 62: pp. 10-18
    125. Yajuan S, Xianshun W, Yongjiang H, Jun S (2009) Effect of Gd addition on the glass forming ability and mechanical propertiese in a Zr- based bulk amorphous alloy. Acta Metall Sin 45:243鈥?48
    126. Zachrisson, C, Kozachkov, H, Roberts, S (2011) Effect of processing on Charpy impact toughness of metallic glass matrix composites. J Mater Res 26: pp. 1260-1268
    127. Zhang ZFFZ, Wu FFF, Gao W et al (2006) Wavy cleavage fracture of bulk metallic glass. Appl Phys Lett 89:251917
    128. Zhao, JX, Qu, RT, Wu, FF (2009) Fracture mechanism of some brittle metallic glasses. J Appl Phys 105: pp. 103519
    129. Zink, M, Samwer, K, Johnson, WL, Mayr, SG (2006) Plastic deformation of metallic glasses: size of shear transformation zones from molecular dynamics simulations. Phys Rev B 73: pp. 172203
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Characterization and Evaluation Materials
    Mechanics
    Civil Engineering
    Automotive and Aerospace Engineering and Traffic
    Mechanical Engineering
  • 出版者:Springer Netherlands
  • ISSN:1573-2673
文摘
Significant progress in understanding the mechanical behavior of metallic glasses (MGs) was made over the past decade, particularly on mechanisms of plastic deformation. However, recent research thrust has been on exploring the mechanics and physics of fracture. MGs can be very brittle with \(K_{Ic}\) values similar to silicate glasses and ceramics or very tough with \(K_{Ic}\) akin to high toughness crystalline metals. Even the tough MGs can become brittle with structural relaxation following annealing at temperatures close to glass transition temperature \((T_{g})\) . Detailed experimental studies coupled with complementary numerical simulations of the recent past have provided insights on the micromechanisms of failure as well as nature of crack tip fields, and established the governing fracture criteria for ductile and brittle glasses. In this paper, the above advances are reviewed and outstanding issues in the context of fracture of amorphous alloys that need to be resolved are identified.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700