用户名: 密码: 验证码:
Genetic variants in root architecture-related genes in a Glycine soja accession, a potential resource to improve cultivated soybean
详细信息    查看全文
  • 作者:Silvas J Prince (1)
    Li Song (1)
    Dan Qiu (1)
    Joao V Maldonado dos Santos (1) (2)
    Chenglin Chai (1)
    Trupti Joshi (2) (3)
    Gunvant Patil (1)
    Babu Valliyodan (1)
    Tri D Vuong (1)
    Mackensie Murphy (1)
    Konstantinos Krampis (4)
    Dominic M Tucker (4)
    Ruslan Biyashev (4)
    Anne E Dorrance (5)
    MA Saghai Maroof (4)
    Dong Xu (2) (3)
    J Grover Shannon (1)
    Henry T Nguyen (1) (2)

    1. National Center for Soybean Biotechnology and Division of Plant Sciences
    ; University of Missouri ; Columbia ; MO ; 65211 ; USA
    2. Christopher S. Bond Life Sciences Center
    ; University of Missouri ; Columbia ; MO ; 65211 ; USA
    3. Department of Computer Science
    ; University of Missouri ; Columbia ; MO ; 65211 ; USA
    4. Department of Crop and Soil Environmental Sciences
    ; Virginia Tech ; Blacksburg ; VA ; 24061 ; USA
    5. Department of Plant Pathology
    ; The Ohio State University ; OARDC ; Wooster ; OH ; 44691 ; USA
  • 关键词:Root ; Quantitative trait locus ; Soybean ; Wild soybean ; Root architecture ; Non ; synonymous SNP ; Microarray ; Single feature polymorphism ; DNA sequencing
  • 刊名:BMC Genomics
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:16
  • 期:1
  • 全文大小:3,810 KB
  • 参考文献:1. Carter, TE, Nelson, RL, Sneller, C, Cui, Z Genetic diversity in soybean. In: Boerma, HR, Specht, JE eds. (2004) Soybean: improvement, production, and uses, 3rd edition. American Society for Agronomy, Madison, pp. 303-416
    2. Schmutz, J, Cannon, SB, Schlueter, J, Ma, J, Mitros, T, Nelson, W (2010) Genome sequence of the paleopolyploid soybean. Nature 463: pp. 178-183 CrossRef
    3. Broich, SL, Palmer, RG (1980) A cluster analysis of wild and domesticated soybean phenotypes. Euphytica 29: pp. 23-32 CrossRef
    4. Hyten, DL, Song, QJ, Zhu, Y, Choi, IY, Nelson, RL, Costa, JM (2006) Impacts of genetic bottlenecks on soybean genome diversity. Proc Natl Acad Sci 103: pp. 16666-16671 CrossRef
    5. Lee, J, Yu, J, Hwang, Y, Blake, S, So, Y, Lee, G (2008) Genetic diversity of wild soybean accessions from South Korea and other countries. Crop Sci 48: pp. 606-616 cropsci2007.05.0257" target="_blank" title="It opens in new window">CrossRef
    6. Kim, KS, Diers, BW, Hyten, DL, Roufmian, MA, Shannon, JG, Nelson, RL (2012) Identification of positive yield QTL alleles from exotic soybean germplasm in two backcross populations. Theor Appl Genet 125: pp. 1353-1369 CrossRef
    7. Joshi, T, Valliyodan, B, Wu, J, Lee, S, Xu, D, Nguyen, HT (2013) Genomic differences between cultivated soybean, G. max and its wild relative G. soja. BMC Genomics 14: pp. S5 CrossRef
    8. Kim, MY, Lee, S, Van, K, Kim, TH, Jeong, SC, Choi, I (2010) Whole-genome sequencing and intensive analysis of the undomesticated soybean genome. Proc Natl Acad Sci 107: pp. 22032-22037 CrossRef
    9. Tanksley, SD, McCouch, SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277: pp. 1063-1066 CrossRef
    10. Xiao, J, Li, J, Grandillo, S, Ahn, SN, Yuan, L, Tanksley, SD (1998) Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150: pp. 899-909
    11. Gupta, PK, Rustgi, S, Mir, RR Array-based high-throughput DNA markers and genotyping platforms for cereal genetics and genomics. In: Gupta, PK, Varshney, RK eds. (2013) Cereal genomics II. Springer, Netherlands, pp. 11-55 CrossRef
    12. Steinmetz, LM, Sinha, H, Richards, DR, Spiegelman, JI, Oefner, PJ, McCusker, JH (2002) Dissecting the architecture of a quantitative trait locus in yeast. Nature 416: pp. 326-330 CrossRef
    13. Childs, LH, Witucka-Wall, H, G眉nther, T, Sulpice, R, Korff, MV, Stitt, M (2010) Single feature polymorphism (SFP)-based selective sweep identification and association mapping of growth-related metabolic traits in Arabidopsis thaliana. BMC Genomics 11: pp. 188 CrossRef
    14. Bernardo, AN, Bradbury, PJ, Ma, H, Hu, S, Bowden, RL, Buckler, ES (2009) Discovery and mapping of single feature polymorphisms in wheat using Affymetrix arrays. BMC Genomics 10: pp. 251 CrossRef
    15. Saxena, RK, Cui, X, Thakur, V, Walter, B, Close, TJ, Varshney, RK (2011) Single feature polymorphisms (SFPs) for drought tolerance in pigeon pea. Funct Integr Genomics 11: pp. 651-657 CrossRef
    16. Hajjar, R, Hodgkin, T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156: pp. 1-13 CrossRef
    17. Si-bin, G, Yu, W, Xiao-qiong, L, Kai-qiang, L, Feng-kuan, H, Cai-hong, C (2013) Development and Identification of Introgression Lines from Cross of Oryza sativa and Oryza minuta. Rice Sci 20: pp. 95-102 CrossRef
    18. Placido, DF, Campbell, MT, Folsom, JJ, Cui, X, Kruger, GR, Baenziger, PS (2013) Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat. Plant Physiol 161: pp. 1806-1819 CrossRef
    19. Liu, B, Fujita, T, Yan, Z, Sakamoto, S, Xu, D, Abe, J (2007) QTL mapping of domestication-related traits in soybean. Ann Bot 100: pp. 1027-1038 CrossRef
    20. Tuyen, DD, Lal, SK, Xu, DH (2010) Identification of a major QTL allele from wild soybean for increasing alkaline salt tolerance in soybean. Theor Appl Genet 121: pp. 229-236 CrossRef
    21. Chen, Y, Chen, P, Reyes, BGDL (2006) Differential responses of the cultivated and wild species of soybean to dehydration stress. Crop Sci 46: pp. 2041-2046 cropsci2005.12.0466" target="_blank" title="It opens in new window">CrossRef
    22. Li, D, Pfeiffer, TW, Cornelius, PL (2008) Soybean QTL for yield and yield components associated with Glycine soja alleles. Crop Sci 48: pp. 571-581 cropsci2007.06.0361" target="_blank" title="It opens in new window">CrossRef
    23. Kanamaru, K, Wang, SD, Abe, J, Yamada, T, Kitamura, K (2006) Identification and characterization of wild soybean (G. soja) strains with high lutein content. Breed Sci 56: pp. 231-234 CrossRef
    24. Heatherly, LG (2009) U.S. soybean production. United Soybean Board, St. Louis, Missouri
    25. Serraj, R, McNally, KL, Slamet-Loedin, I, Kholi, A, Haefele, SM, Atlin, G (2011) Drought resistance improvement in rice: an integrated genetic and resource management strategy. Plant Prod Sci 14: pp. 1-14 CrossRef
    26. Zhao, CX, Deng, XP, Shan, L, Steudle, E, Zhang, SQ, Ye, Q (2005) Changes in root hydraulic conductivity during wheat evolution. J Integr Plant Biol 47: pp. 302-310 CrossRef
    27. Dorlodot, S, Foster, B, Pages, L, Price, A, Tuberosa, R, Draye, X (2007) Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci 12: pp. 474-481 CrossRef
    28. Prince, SJ, Mutava, RN, Pegoraro, C, Oliveira, ACD, Nguyen, HT Root characters. In: Kole, C eds. (2013) Genomics and breeding for climate resilient crops. Springer, Berlin, pp. 67-131 CrossRef
    29. Suji, KK, Prince, SJ, Mankhar, SP, Kanagaraj, K, Poornima, R, Amutha, K (2012) Evaluation of rice near isogenic lines with root QTLs for plant production and root traits in rainfed target populations of environment. Field Crop Res 137: pp. 89-96 CrossRef
    30. Bouteille, M, Rolland, G, Balsera, C, Loudet, O, Muller, B (2012) Disentangling the intertwined genetic bases of root and shoot growth in Arabidopsis. Plos One 7: pp. e32319 CrossRef
    31. Ron, M, Dorrity, MW, Lucas, M, Toal, T, Hernandez, RI, Little, SA (2013) Identification of novel loci regulating interspecific variation in root morphology and cellular development in tomato. Plant Physiol 162: pp. 755-768 CrossRef
    32. Zhou, L, Mideros, SX, Bao, L, Hanlon, R, Arredondo, FD, Tripathy, S (2009) Infection and genotype remodel the entire soybean transcriptome. BMC Genomics 10: pp. 49 CrossRef
    33. Joshi, T, Fitzpatrick, MR, Chen, S, Liu, Y, Zhang, H, Endacott, RZ (2014) Soybean Knowledge Base (SoyKB): a web resource for integration of soybean translational genomics and molecular breeding. Nucl Acids Res 42: pp. D1245-D1252 CrossRef
    34. Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, et al. Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinformatics. 2008; 420747.
    35. Lam, HM, Xu, X, Liu, X, Chen, W, Yang, G, Wong, F (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42: pp. 1053-1059 CrossRef
    36. Abdel-Haleem, H, Lee, G, Boerma, RH (2011) Identification of QTL for increased fibrous roots in soybean. Theor Appl Genet 122: pp. 935-946 CrossRef
    37. Brensha, W, Kantartzi, SK, Meksem, K, Grier, RL, Bara-kat, A, Lightfoot, DA (2012) Genetic analysis of root and shoot traits in the 鈥榚ssex鈥?by 鈥榝orrest鈥?recombinant inbred line population of soybean. J Plant Genome Sci 1: pp. 1-9 CrossRef
    38. Liang, H, Yu, Y, Yang, H, Xu, L, Dong, W, Du, H (2014) Inheritance and QTL mapping of related root traits in soybean at the seedling stage. Theor Appl Genet 127: pp. 2127-2137 CrossRef
    39. Liang, Q, Cheng, X, Mei, M, Yan, X, Liao, H (2010) QTL analysis of root traits as related to phosphorus efficiency in soybean. Ann Bot 106: pp. 223-234 CrossRef
    40. Liu, Y, Gai, JY, Lv, HN (2005) Identification of rhizosphere abiotic stress tolerance and related root traits in soybean. Acta Agron Sin 31: pp. 1132-1137
    41. Yang, SP, Chen, JM, He, XH, Yu, DY, Gai, JY (2005) Inheritance of drought tolerance and root traits of seedling in soybean. Soybean Sci 24: pp. 275-280
    42. Liu, Y, Gai, JY, Lv, HN (2007) Genetic variation of root traits at seedling stage and their relationship with stress tolerance in soybean. Soybean Sci 26: pp. 127-133
    43. Falik, O, Mordoch, Y, Ben-Natan, D, Vanunu, M, Goldstein, O, Novoplansky, A (2012) Plant responsiveness to root-root communication of stress cues. Ann Bot 271: pp. 271-280 CrossRef
    44. Hudak, CM, Patterson, RP (1995) Vegetative growth analysis of a drought-resistant soybean plant introduction. Crop Sci 35: pp. 464-471 cropsci1995.0011183X003500020031x" target="_blank" title="It opens in new window">CrossRef
    45. Bengough, AG, McKenzie, BM, Hallett, PD, Valentine, TA (2011) Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. J Exp Bot 62: pp. 59-68 CrossRef
    46. Bates, TR, Lynch, JP (2000) Plant growth and phosphorus accumulation of wild type and two root hair mutants of Arabidopsis thaliana. Am J Bot 87: pp. 958-963 CrossRef
    47. Reinprecht, Y, Poysa, V, Yu, K, Rajcan, I, Ablett, G, Pauls, K (2006) Seed and agronomic QTL in low linolenic acid, lipoxygenase-free soybean germplasm. Genome 49: pp. 1510-1527 CrossRef
    48. Liu, L, Gan, Y, Bueckert, R, Rees, KV, Warkentin, T (2010) Fine root distributions in oilseed and pulse crops. Crop Sci 50: pp. 222-226 cropsci2009.03.0156" target="_blank" title="It opens in new window">CrossRef
    49. Eissenstat, DM, Yanai, RD Root life span, efficiency, and turnover. In: Waisel, Y, Eshel, A, Kafkafi, U eds. (2002) Plant roots, the hidden half. Marcel Dekker, New York, pp. 221-238
    50. Sekhon, RS, Lin, H, Childs, KL, Hansey, CN, Buell, CR, Leon, ND (2011) Genome-wide atlas of transcription during maize development. Plant J 66: pp. 553-563 CrossRef
    51. Roberts, SK (2006) Plasma membrane anion channels in higher plants and their putative functions in roots. New Phytologist 169: pp. 647-666 CrossRef
    52. Kochian, LV, Hoekenga, OA, Pi帽eros, MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55: pp. 459-493 CrossRef
    53. Chen, YH, Hu, L, Punta, M, Bruni, R, Hillerich, B, Kloss, B (2010) Homologue structure of the SLAC1 anion channel for closing stomata in leaves. Nature 467: pp. 1074-1080 CrossRef
    54. Ge, Y, Li, Y, Zhu, Y, Bai, X, Lv, D, Guo, D (2010) Global transcriptome profiling of wild soybean roots under NaHCO3 treatment. BMC Plant Biol 10: pp. 153 CrossRef
    55. Koenig, D, Jim茅nez-G贸mez, JM, Kimura, S, Fulop, D, Chitwood, DH, Headland, LR (2013) Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proc Natl Acad Sci 110: pp. E2655-E2662 CrossRef
    56. Du, J, Tian, Z, Sui, Y, Zhao, M, Song, Q, Cannon, SB (2012) Pericentromeric effects shape the patterns of divergence, retention, and expression of duplicated genes in the paleopolyploid soybean. Plant Cell 24: pp. 21-32 CrossRef
    57. Sun, W, Xu, W, Zhu, H, Liu, A, Liu, L, Sun, W (2010) Comparative transcriptomic profiling of a salt tolerant wild tomato species and a salt sensitive tomato cultivar. Plant Cell Physiol 51: pp. 997-1006 CrossRef
    58. Ju, C, Yoon, GM, Shemansky, JM, Lin, DY, Ying, ZI, Chang, J (2012) CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci 109: pp. 19486-19491 CrossRef
    59. Zhu, J, Alvarez, S, Marsh, EL, LeNoble, ME, Cho, IJ, Sivaguru, M (2007) Cell wall proteome in the maize primary root elongation zone. II. Region-specific changes in water soluble and lightly ionically bound proteins under water deficit. Plant Physiol 145: pp. 1533-1548 CrossRef
    60. Voothuluru, P, Sharp, RE (2013) Apoplastic hydrogen peroxide in the growth zone of the maize primary root under water stress. I. Increased levels are specific to the apical region of growth maintenance. J Exp Bot 64: pp. 1223-1233 CrossRef
    61. Duarte, JM, Wall, PK, Edger, PP, Landherr, LL, Ma, H, Pires, JC (2010) Identification of shared single copy nuclear genes in Arabidopsis, Populus, Vitis and Oryza and their phylogenetic utility across various taxonomic levels. BMC Evol Biol 10: pp. 61 CrossRef
    62. Li, L, Petsch, K, Shimuzu, R, Liu, S, Xu, WW, Ying, K (2013) Mendelian and non-mendelian regulation of gene expression in maize. PLoS Genet 9: pp. e1003202 CrossRef
    63. Lauter, ANM, Peiffer, GA, Yin, T, Whitham, SA, Cook, D, Shoemaker, RC (2014) Identification of candidate genes involved in early iron deficiency chlorosis signaling in soybean roots and leaves. BMC Genomics 15: pp. 702 CrossRef
    64. Cui, H, Levesque, MP, Vernoux, T, Jung, JW, Paquette, AJ, Gallagher, KL (2007) An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316: pp. 421-425 CrossRef
    65. Sozzani, R, Cui, H, Moreno-Risueno, MA, Busch, W, Norman, JM, Vernoux, T (2010) Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth. Nature 466: pp. 128-132 CrossRef
    66. Pozo, JCD, Dharmasiri, S, Hellmann, H, Walker, L, Gray, WM, Estelle, M (2002) AXR1-ECR1鈥揹ependent conjugation of RUB1 to the Arabidopsis cullin AtCUL1 is required for auxin response. Plant Cell 14: pp. 421-433 CrossRef
    67. Lyu, J, Zhang, S, Dong, Y, Weiming, H, Jing, Z, Deng, X (2013) Analysis of elite variety tag SNPs reveals an important allele in upland rice. Nat Commun 4: pp. 2138-2146 CrossRef
    68. Cicek, MS, Chen, P, Maroof, MAS, Buss, GR (2006) Interrelationships among agronomic and seed quality traits in an interspecific soybean recombinant inbred population. Crop Sci 46: pp. 1253-1259 cropsci2005.06-0162" target="_blank" title="It opens in new window">CrossRef
    69. Tucker, DM, Saghai Maroof, MA, Mideros, S, Skoneczka, JA, Nabati, DA, Buss, GR (2010) Mapping quantitative trait loci for partial resistance to Phytophthora sojae in a soybean interspecific cross. Crop Sci 50: pp. 628-635 cropsci2009.03.0161" target="_blank" title="It opens in new window">CrossRef
    70. Manavalan, LP, Guttikonda, SK, Nguyen, VT, Shannon, JG, Nguyen, HT (2010) Evaluation of diverse soybean germplasm for root growth and architecture. Plant and Soil 330: pp. 503-514 CrossRef
    71. Ooijen, JH, Voorrips, RE (2001) JoinMap 3.0 software for the calculation of genetic linkage maps. Plant Research International, Wageningen
    72. Grant, D, Nelson, RT, Cannon, SB, Shoemaker, RC (2010) SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res 38: pp. D843-846 CrossRef
    73. Song, QJ, Marek, LF, Shoemaker, RC, Lark, KG, Concibido, VC, Delanney, X (2004) A new integrated genetic linkage map of the soybean. Theor Appl Genet 109: pp. 122-128 CrossRef
    74. Joehanes, R, Nelson, JC (2008) Q Gene 4.0 an extensible java QTL-analysis platform. Bioinformatics 24: pp. 2788-2789 CrossRef
    75. Krzywinski, M, Schein, J, Birol, I, Connors, J, Gascoyne, R, Horsman, D (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19: pp. 1639-1645 CrossRef
    76. Gotz, S, Garcia-Gomez, JM, Terol, J, Williams, TD, Nagaraj, SH, Nueda, MJ (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36: pp. 3420-3435 CrossRef
    77. Livak, K, Schmittgen, T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2鈭?螖螖C T method. Methods 25: pp. 402-408 CrossRef
    78. Rozen, S, Skaletsky, HJ Primer3 on the WWW for general users and for biologist programmers. In: Misener, S, Krawetz, SA eds. (2000) Bioinformatics methods and protocols: methods in molecular biology. Humana Press Inc, Totowa (NJ), pp. 365-386
    79. Berloo, V (2008) GGT 2.0 versatile software for visualization and analysis of genetic data. J Heredity 99: pp. 232-236 CrossRef
    80. McKenna, A, Hanna, M, Banks, E, Sivachenko, A, Cibulskis, K, Kernytsky, A (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20: pp. 1297-303 CrossRef
    81. Pablo, C, Adrian, P, Le, LW, Melissa, C, Tung, N, Luan, W (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Landes Biosci 6: pp. 1-13
    82. Langewisch, T, Zhang, H, Vincent, R, Joshi, T, Xu, D, Bilyeu, K (2014) Major soybean maturity gene haplotypes revealed by SNPViz analysis of 72 sequenced soybean genomes. Plos One 9: pp. e94150 CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Root system architecture is important for water acquisition and nutrient acquisition for all crops. In soybean breeding programs, wild soybean alleles have been used successfully to enhance yield and seed composition traits, but have never been investigated to improve root system architecture. Therefore, in this study, high-density single-feature polymorphic markers and simple sequence repeats were used to map quantitative trait loci (QTLs) governing root system architecture in an inter-specific soybean mapping population developed from a cross between Glycine max and Glycine soja. Results Wild and cultivated soybean both contributed alleles towards significant additive large effect QTLs on chromosome 6 and 7 for a longer total root length and root distribution, respectively. Epistatic effect QTLs were also identified for taproot length, average diameter, and root distribution. These root traits will influence the water and nutrient uptake in soybean. Two cell division-related genes (D type cyclin and auxin efflux carrier protein) with insertion/deletion variations might contribute to the shorter root phenotypes observed in G. soja compared with cultivated soybean. Based on the location of the QTLs and sequence information from a second G. soja accession, three genes (slow anion channel associated 1 like, Auxin responsive NEDD8-activating complex and peroxidase), each with a non-synonymous single nucleotide polymorphism mutation were identified, which may also contribute to changes in root architecture in the cultivated soybean. In addition, Apoptosis inhibitor 5-like on chromosome 7 and slow anion channel associated 1-like on chromosome 15 had epistatic interactions for taproot length QTLs in soybean. Conclusion Rare alleles from a G. soja accession are expected to enhance our understanding of the genetic components involved in root architecture traits, and could be combined to improve root system and drought adaptation in soybean.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700