用户名: 密码: 验证码:
Global model SMF2 of the F2-layer maximum height
详细信息    查看全文
  • 作者:V. N. Shubin ; A. T. Karpachev ; V. A. Telegin ; K. G. Tsybulya
  • 刊名:Geomagnetism and Aeronomy
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:55
  • 期:5
  • 页码:609-622
  • 全文大小:797 KB
  • 参考文献:Ben’kova, N.P., Legen’ka, A.D., Kochenova, N.A., Fatkullin, M.N., and Fligel- M.D., Model of electron density in the topside midlatitude ionosphere according to the Interkosmos-19 data, Kosm. Issled., 1987, vol. 25, no. 3, pp. 410-20.
    Ben’kova, N.P., Kozlov, E.F., Kochenova, N.A., Samorokin, N.I., and Fligel- M.D., Struktura i dinamika subavroral’noi ionosfery (Structure and Dynamics of the Subauroral Ionosphere), Moscow: Nauka, 1993.
    Bilitza, D., Sheikh, N.M., and Eyfrig, R., A global model for the height of the F2-peak using M3000 values from the CCIR numerical map, Telecommun. J., 1979, vol. 46, no. 9, pp. 549-53.
    Bilitza, D. and Reinisch, B.W., International reference ionosphere 2007: improvements and new parameters, Adv. Space Res., 2008, vol. 42, no. 4, pp. 599-09.CrossRef
    Chernyshev, O.V. and Vasil’eva, T.N., Prognoz maksimal’no primenimykh chastot (Forecasting the maximum useful frequencies), Moscow: Nauka, 1973.
    Chu, Y.-H., Su, C.-L., and Ko, H.-T., A global survey of cosmic ionospheric peak electron density and its height: a comparison with ground-based ionosonde measurements, Adv. Space Res., 2010, vol. 6, no. 4, pp. 431-39.CrossRef
    Deminov, M.G., Kozlov, E.F., and Sitnov, Yu.S., Distribution of oxygen ions over the magnetic equator, in Issledovaniya problem solnechno-zemnoi fiziki (Studies of Solar–Terrestrial Physics Problems), Moscow: IZMIRAN, 1977, pp. 22-0.
    Dudeney, J.R., The accuracy of simple methods for determining the height of the maximum electron concentration of the F2-layer from scaled ionospheric characteristics, J. Atmos. Terr. Phys., 1983, vol. 45, nos. 8-, pp. 629-40.CrossRef
    Jackson, J., The reduction of topside ionograms to electron-density profiles, Proc. IEEE, 1969, vol. 57, no. 6, pp. 960-75.CrossRef
    Gulyaeva, T.L., Bradley, P.A., Stanislawska, I., and Juchnikowski, G., Towards a new reference model of hmF2 for IRI, Adv. Space Res., 2008, vol. 42, pp. 666-72.CrossRef
    Hajj, G.A. and Romans, L.J., Ionospheric electron density profiles obtained with the global positioning system: results from the GPS/MET experiment, Radio Sci., 1998, vol. 33, no. 1, pp. 175-90.CrossRef
    Hoque, M.M. and Jakowski, N., A new global model for the ionospheric F2 peak height for radio wave propagation, Ann. Geophys., 2012, vol. 30, no. 5, pp. 797-09.CrossRef
    Karpachev, A.T., Klimenko, M.V., Klimenko, V.V., and Kuleshova, V.P., Statistical study of the F3-layer characteristics retrieved from Intercosmos-19 satellite data, J. Atmos. Sol.–Terr. Phys., 2013, vol. 103, no. 10, pp. 121-28.CrossRef
    Krankowski, A., Zakharenkova, I., Krypiak-Gregorczy, A., Shagimuratov, I.I., and Wielgosz, P., Ionospheric electron density observed by FORMOSAT-3/COSMIC over the European region and validated by ionosonde data, J. Geod., 2011, vol. 85, no. 12, pp. 949-64.CrossRef
    Lei, J., Liu, L., and Wan, W., Variations of electron density based on long-term incoherent scatter data and ionosonde measurements over Millstone Hill, Radio Sci., 2005, vol. 40. doi:10.1029/2004RS003106
    Lei, J., Syndergaard, S., Burns, A.G., et al., Comparison of cosmic ionospheric measurements with ground-based observations and model predictions: Preliminary results, J. Geophys. Res., 2007, vol. 112. doi:10.1029/2006JA012240
    Liu, L., Le H., Chen Y., He, M., Wan, W., and Yue, X., Features of the middleand low-latitude ionosphere during solar minimum as revealed from COSMIC radio occultation measurements, J. Geophys. Res., 2011, vol. 116, no. A09307. doi:10.1029/2011JA016691
    Marques, G.C., Carrion, M.A., Gonzalez, S., and Rodrigues de Souza, J., Season and solar cycle responses of the ionospheric peak electron density over Arecibo based on incoherent scatter data: Comparison of measurement and models, Paper presented at 38th COSPAR Scientific Assembly, 8-5 July, 2010, Bremen, Germany.
    Nsumei, P.A., Reinisch, B.W., Huang, X., and Bilitza, D., Comparing topside and bottomside-measured characteristics of the F2 layer peak, Adv. Space Res., 2010, vol. 46, pp. 974-83.CrossRef
    Potula, B.S., Chu, Y.-H., Uma, G., Hsia, H.-P., and Wu, K.-H., A global comparative study on the ionospheric measurements between cosmic radio occultation technique and IRI model, J. Geophys. Res., 2011, vol. 116, no. A02310. doi:10.1029/2010JA015814
    Rawer, K., Ramakrishnan, S., and Bilitza, D., International reference ionosphere, International Union of Radio Science. Special Report, Brussels, Belgium, 1978.
    Shubin, V.N., Karpachev, A.T., and Tsybulya, K.G., Global model of the F2 layer peak height for low solar activity based on GPS radio-occultation data, J. Atmos. Sol.–Terr. Phys., 2013, vol. 104, pp. 106-15.CrossRef
    Vasil’ev, G.V., Goncharov, L.P., and Fligel- M.D., Errors in measurement of virtual height of reflection at ionospheric sounding from the Intercosmos-19 satellite, in Issledovanie struktury i volnovykh svoistv prizemnoi plazmy (Study of the Structure and Wave Properties of the
  • 作者单位:V. N. Shubin (1)
    A. T. Karpachev (1)
    V. A. Telegin (1)
    K. G. Tsybulya (2)

    1. Institute of Terrestrial Magnetism, the Ionosphere, and Radiowave Propagation, Russian Academy of Sciences, Troitsk, Moscow oblast, 142082, Russia
    2. Institute of Applied Geophysics, Rostokinskaya ul. 9, Moscow, 129128, Russia
  • 刊物主题:Geophysics/Geodesy;
  • 出版者:Springer US
  • ISSN:1555-645X
文摘
A global model SMF2 (Satellite Model of F2 layer) of the F2-layer height was created. For its creation, data from the topside sounding on board the Interkosmos-19 satellite, as well as the data of radio occultation measurements in the CHAMP, GRACE, and COSMIC experiments, were used. Data from a network of ground-based sounding stations were also additionally used. The model covers all solar activity levels, months, hours of local and universal time, longitudes, and latitudes. The model is a median one within the range of magnetic activity values K p< 3+. The spatial–temporal distribution of hmF2 in the new model is described by mutually orthogonal functions for which the attached Legendre polynomials are used. The temporal distribution is described by an expansion into a Fourier series in UT. The input parameters of the model are geographic coordinates, month, and time (UT or LT). The new model agrees well with the international model of the ionosphere IRI in places where there are many ground-based stations, and it more precisely describes the F2-layer height in places where they are absent: over the oceans and at the equator. Under low solar activity, the standard deviation in the SMF2 model does not exceed 14 km for all hours of the day, as compared to 26.6 km in the IRI-2012 model. The mean relative deviation is by approximately a factor of 4 less than that in the IRI model. Under high solar activity, the maximum standard deviations in the SMF2 model reach 25 km; however, in the IRI they are higher by a factor of ~2. The mean relative deviation is by a factor of ~2 less than in the IRI model. Thus, a hmF2 model that is more precise than IRI-2012 was created. Original Russian Text ? V.N. Shubin, A.T. Karpachev, V.A. Telegin, K.G. Tsybulya, 2015, published in Geomagnetizm i Aeronomiya, 2015, Vol. 55, No. 5, pp. 623-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700