用户名: 密码: 验证码:
Coronary arterial dynamics computation with medical-image-based time-dependent anatomical models and element-based zero-stress state estimates
详细信息    查看全文
  • 作者:Kenji Takizawa ; Ryo Torii ; Hirokazu Takagi ; Tayfun E. Tezduyar
  • 关键词:Coronary arterial dynamics ; Time ; dependent anatomical model ; Medical ; image ; based data ; Coronary atherosclerosis ; Element ; based zero ; stress state estimate ; Mixed zero ; stress state
  • 刊名:Computational Mechanics
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:54
  • 期:4
  • 页码:1047-1053
  • 全文大小:863 KB
  • 参考文献:1. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid–structure interactions with the deforming-spatial-domain/stabilized space–time formulation. Comput Methods Appl Mech Eng 195:1885-895. doi:10.1016/j.cma.2005.05.050 CrossRef
    2. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput Mech 38:482-90. doi:10.1007/s00466-006-0065-6 CrossRef
    3. Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38:310-22 CrossRef
    4. Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modeling of fluid–structure interactions with the space-time finite elements: arterial fluid mechanics. Int J Numer Methods Fluids 54:901-22. doi:10.1002/fld.1443 CrossRef
    5. Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2007) YZ \(\beta \) discontinuity-capturing for advection-dominated processes with application to arterial drug delivery. Int J Numer Methods Fluids 54:593-08. doi: 10.1002/fld.1484 CrossRef
    6. Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43:3-7 CrossRef
    7. Isaksen JG, Bazilevs Y, Kvamsdal T, Zhang Y, Kaspersen JH, Waterloo K, Romner B, Ingebrigtsen T (2008) Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke 39:3172-178 CrossRef
    8. Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198:3534-550 CrossRef
    9. Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009) Computational fluid–structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45:77-9 CrossRef
    10. Takizawa K, Christopher J, Tezduyar TE, Sathe S (2010) Space–time finite element computation of arterial fluid–structure interactions with patient-specific data. Int J Numer Methods Biomed Eng 26:101-16. doi:10.1002/cnm.1241 CrossRef
    11. Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46:17-9. doi:10.1007/s00466-009-0423-2 CrossRef
    12. Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE (2010) Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions. Comput Mech 46:31-1. doi:10.1007/s00466-009-0425-0 CrossRef
    13. Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid–structure interaction simulation of cerebral aneurysms. Comput Mech 46:3-6 CrossRef
    14. Sugiyama K, Ii S, Takeuchi S, Takagi S, Matsumoto Y (2010) Full Eulerian simulations of biconcave neo-Hookean particles in a Poiseuille flow. Comput Mech 46:147-57 CrossRef
    15. Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid–structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9:481-98 CrossRef
    16. Bazilevs Y, del Alamo JC, Humphrey JD (2010) From imaging to prediction: emerging non-invasive methods in pediatric cardiology. Prog Pediat Cardiol 30:81-9 CrossRef
    17. Tezduyar TE, Takizawa K, Brummer T, Chen PR (2011) Space–time fluid–structure interaction modeling of patient-specific cerebral aneurysms. Int J Numer Methods Biomed Eng 27:1665-710. doi:10.1002/cnm.1433 CrossRef
    18. Hsu M-C, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulations. Finite Elem Anal Des 47:593-99 CrossRef
    19. Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space-time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling. Arch Comput Methods Eng 19:171-25. doi:10.1007/s11831-012-9071-3 CrossRef
    20. Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2012) Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent. Comput Mech 50:675-86. doi:10.1007/s00466-012-0760-4 CrossRef
    21. Yao JY, Liu GR, Narmoneva DA, Hinton RB, Zhang Z-Q (2012) Immersed smoothed finite element method for fluid–structure interaction simulation of aortic valves. Comput Mech 50:789-04 CrossRef
    22. Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid–structure interaction: methods and applications. Wiley. ISBN:978-0470978771
    23. Bazilevs Y, Takizawa K, Tezduyar TE (2013) Challenges and directions in computational fluid–structure interaction. Math Models Methods Appl Sci 23:215-21. doi:10.1142/S0218202513400010 CrossRef
    24. Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2013) Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms. Comput Mech 51:1061-073. doi:10.1007/s00466-012-0790-y CrossRef
    25. Long CC, Marsden AL, Bazilevs Y (2013) Fluid–structure interaction simulation of pulsatile ventricular assist devices. Comput Mech 52:971-81. doi:10.1007/s00466-013-0858-3 CrossRef
    26. Long CC, Esmaily-Moghadam M, Marsden AL, Bazilevs Y (2013) Computation of residence time in the simulation of pulsatile ventricular assist devices. Comput Mech. doi:10.1007/s00466-013-0931-y
    27. Esmaily-Moghadam M, Bazilevs Y, Marsden AL (2013) A new preconditioning technique for implicitly coupled multidomain simulations with applications to hemodynamics. Comput Mech. doi:10.1007/s00466-013-0868-1
    28. Takizawa K, Takagi H, Tezduyar TE, Torii R (2013) Estimation of element-based zero-stress state for arterial FSI computations. Comput Mech. doi:10.1007/s00466-013-0919-7
    29. Takizawa K, Tezduyar TE, Buscher A, Asada S (2013) Space-time interface-tracking with topology change (ST-TC). Comput Mech. doi:10.1007/s00466-013-0935-7
    30. Yao J, Liu GR (2014) A matrix-form GSM-CFD solver for incompressible fluids and its application to hemodynamics. Comput Mech. doi:10.1007/s00466-014-0990-8
    31. Long CC, Marsden AL, Bazilevs Y (2014) Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk. Comput Mech. doi:10.1007/s00466-013-0967-z
    32. Takizawa K, Bazilevs Y, Tezduyar TE, Long CC, Marsden AL, Schjodt K (2014) ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. Math Models Methods Appl Sci. doi:10.1142/S0218202514500250
    33. Arbab-Zadeh A, Nakao M, Virmani R, Fuster V (2012) Acute coronary events. Circulation 125:1147-156 CrossRef
    34. Slager CJ, Wentzel JJ, Gijsen FJ, Thury A, van der Wal AC, Schaar JA, Serruys PW (2005) The role of shear stress in the destabilization of vulnerable plaques and related therapeutic implications. Nat Clin Pract Cardiovasc Med 2:1147-156
    35. Gijsen FJ, Wentzel JJ, Thury A, Mastik F, Schaar JA, Shuurbiers JC, Slager CJ, van der Giessen WJ, de Feyter PJ, van der Steen AF, Serruys PW (2008) Strain distribution over plaques in human coronary arteries relates to shear stress. Am J Physiol Heart Circ Physiol 295:H1608–H1614 CrossRef
    36. VanEpps JS, Londono R, Nieponice A, Vorp DA (2009) Design and validation of a system to simulate coronary flexure dynamics on arterial segments perfused ex vivo. Biomech Model Mechanobiol 8:57-6 CrossRef
    37. Yang C, Bach RG, Zheng J, Naqa IE, Woodard PK, Teng Z, Billiar K, Tang D (2009) In vivo ivus-based 3-d fluid–structure interaction models with cyclic bending and anisotropic vessel properties for human atherosclerotic coronary plaque mechanical analysis. IEEE Trans Biomed Eng 56:2420-428 CrossRef
    38. Torii R, Wood NB, Hadjiloizou N, Dowsey AW, Wright AR, Hughes AD, Davies J, Francis DP, Mayet J, Yang GZ, Thom SAM, Xu XY (2009) Fluid–structure interaction analysis of a patient-specific right coronary artery with physiological velocity and pressure waveforms. Commun Numer Methods Eng 25:565-80 CrossRef
    39. Krams R, Wentzel JJ, Oomen JA, Vinke R, Schuurbiers JC, de Feyter PJ, Serruys PW, Slager CJ (1997) Evaluation of endothelial shear stress and 3d geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo. combining 3d reconstruction from angiography and ivus (angus) with computational fluid dynamics. Arterioscler Thromb Vasc Biol 17:2061-065 CrossRef
    40. Torii R, Wood NB, Hadjiloizou N, Dowsey AW, Wright AR, Hughes AD, Davies J, Francis D, Mayet J, Yang GZ, Thom SA, Xu XY (2009) Stress phase-angle depicts differences in coronary artery hemodynamics due to changes in flow and geometry after percutaneous coronary intervention. Am J Physiol Heart Circ Physiol 296:H765–H776 CrossRef
    41. Zeng D, Ding Z, Friedman MH, Ethier CR (2003) Effects of cardiac motion on right coronary artery hemodynamics. Ann Biomed Eng 31:420-29 CrossRef
    42. Zhu H, Friedman MH (2003) Relationship between the dynamic geometry and wall thickness of a human coronary artery. Arterioscler Thromb Vasc Biol 23:2260-265 CrossRef
    43. Torii R, Keegan J, Wood NB, Dowsey AW, Hughes AD, Yang G-Z, Firmin DN, Thom SAM, Xu XY (2010) MR image-based geometric and hemodynamic investigtion of the right coronary artery with dynamic vessel motion. Ann Biomed Eng 38:2606-620 CrossRef
    44. Tezduyar TE, Sathe S, Schwaab M, Conklin BS (2008) Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique. Int J Numer Methods Fluids 57:601-29. doi:10.1002/fld.1633 CrossRef
    45. Takizawa K, Moorman C, Wright S, Purdue J, McPhail T, Chen PR, Warren J, Tezduyar TE (2011) Patient-specific arterial fluid–structure interaction modeling of cerebral aneurysms. Int J Numer Methods Fluids 65:308-23. doi:10.1002/fld.2360 CrossRef
    46. Takizawa K, Tezduyar TE (2014) Space–time computation techniques with continuous representation in time (ST-C). Comput Mech 53:91-9. doi:10.1007/s00466-013-0895-y CrossRef
    47. Huang H, Virmani R, Younis H, Burke AP, Kamm RD, Lee RT (2001) The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 103:1051-056 CrossRef
    48. Davies JE, Whinnett ZI, Francis DP, Manisty CH, Aguado-Sierra J, Willson K, Foale RA, Malik IS, Hughes AD, Parker KH, Mayet J (2006) Evidence of a dominant backward-propagating “suction-wave responsible for diastolic coronary filling in humans, attenuated in left ventricular hypertrophy. Circulation 113:1768-778 CrossRef
    49. Roman MJ, Devereux RB, Kizer JR, Okin PM, Lee ET, Wang W, Umans JG, Calhoun D, Howard BV (2009) High central pulse pressure is independently associated with adverse cardiovascular outcome the strong heart study. J Am Coll Cardiol 54:1730-734
    50. Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized- \(\alpha \) method. J Appl Mech 60:371-75
    51. Saad Y, Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7:856-69 CrossRef
  • 作者单位:Kenji Takizawa (1)
    Ryo Torii (2)
    Hirokazu Takagi (1)
    Tayfun E. Tezduyar (3)
    Xiao Y. Xu (4)

    1. Department of Modern Mechanical Engineering and Waseda Institute for Advanced Study, Waseda University, 1-6-1 Nishi-Waseda, Shinjuku-ku, Tokyo?, 169-8050, Japan
    2. Mechanical Engineering, University College London, Torrington Place, London?, WC1E 7JE, UK
    3. Mechanical Engineering, Rice University, MS 321, 6100 Main Street, Houston, TX?, 77005, USA
    4. Department of Chemical Engineering, Imperial College London, South Kensington Campus, London?, SW7 2AZ, UK
  • ISSN:1432-0924
文摘
We propose a method for coronary arterial dynamics computation with medical-image-based time-dependent anatomical models. The objective is to improve the computational analysis of coronary arteries for better understanding of the links between the atherosclerosis development and mechanical stimuli such as endothelial wall shear stress and structural stress in the arterial wall. The method has two components. The first one is element-based zero-stress (ZS) state estimation, which is an alternative to prestress calculation. The second one is a “mixed ZS state-approach, where the ZS states for different elements in the structural mechanics mesh are estimated with reference configurations based on medical images coming from different instants within the cardiac cycle. We demonstrate the robustness of the method in a patient-specific coronary arterial dynamics computation where the motion of a thin strip along the arterial surface and two cut surfaces at the arterial ends is specified to match the motion extracted from the medical images.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700