用户名: 密码: 验证码:
FSI modeling of the Orion spacecraft drogue parachutes
详细信息    查看全文
  • 作者:Kenji Takizawa ; Tayfun E. Tezduyar ; Ryan Kolesar
  • 关键词:Spacecraft parachutes ; Orion spacecraft drogue parachutes ; Fluid–structure interaction ; Reefed stages ; Disreefing ; Compressible flow
  • 刊名:Computational Mechanics
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:55
  • 期:6
  • 页码:1167-1179
  • 全文大小:22,613 KB
  • 参考文献:1.Takizawa K, Tezduyar TE (2012) Computational methods for parachute fluid-structure interactions. Arch Comput Methods Eng 19:125-69. doi:10.-007/?s11831-012-9070-4 MathSciNet View Article
    2.Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid-structure interaction: methods and applications. Wiley, ISBN 978-0470978771
    3.Takizawa K, Montes D, Fritze M, McIntyre S, Boben J, Tezduyar TE (2013) Methods for FSI modeling of spacecraft parachute dynamics and cover separation. Math Models Methods Appl Sci 23:307-38. doi:10.-142/?S021820251340005- MATH MathSciNet View Article
    4.Takizawa K, Tezduyar TE, Boben J, Kostov N, Boswell C, Buscher A (2013) Fluid-structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity. Comput Mech 52:1351-364. doi:10.-007/?s00466-013-0880-5 MATH View Article
    5.Takizawa K, Tezduyar TE, Boswell C, Kolesar R, Montel K (2014) FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes. Comput Mech 54:1203-220. doi:10.-007/?s00466-014-1052-y MATH MathSciNet View Article
    6.Takizawa K, Tezduyar TE, Kolesar R, Boswell C, Kanai T, Montel K (2014) Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes. Comput Mech 54:1461-476. doi:10.-007/?s00466-014-1069-2 MATH MathSciNet View Article
    7.Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1-4. doi:10.-016/?S0065-2156(08)70153-4 MATH MathSciNet
    8.Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555-75. doi:10.-002/?fld.-05 MATH MathSciNet View Article
    9.Tezduyar TE, Sathe S (2007) Modeling of fluid-structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54:855-00. doi:10.-002/?fld.-430 MATH MathSciNet View Article
    10.Takizawa K, Tezduyar TE (2011) Multiscale space-time fluid-structure interaction techniques. Comput Mech 48:247-67. doi:10.-007/?s00466-011-0571-z MATH MathSciNet View Article
    11.Takizawa K, Tezduyar TE (2012) Space-time fluid-structure interaction methods. Math Models Methods Appl Sci 22:1230001. doi:10.-142/?S021820251230001- MathSciNet View Article
    12.Takizawa K (2014) Computational engineering analysis with the new-generation space-time methods. Comput Mech 54:193-11. doi:10.-007/?s00466-014-0999-z MATH MathSciNet View Article
    13.Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329-49MATH MathSciNet View Article
    14.Ohayon R (2001) Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems. Comput Methods Appl Mech Eng 190:3009-019MATH View Article
    15.van Brummelen EH, de Borst R (2005) On the nonnormality of subiteration for a fluid-structure interaction problem. SIAM J Sci Comput 27:599-21MATH MathSciNet View Article
    16.Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Comput Mech 38:310-22MATH MathSciNet View Article
    17.Khurram RA, Masud A (2006) A multiscale/stabilized formulation of the incompressible Navier-Stokes equations for moving boundary flows and fluid-structure interaction. Comput Mech 38:403-16MATH View Article
    18.Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43:3-7MATH MathSciNet View Article
    19.Dettmer WG, Peric D (2008) On the coupling between fluid flow and mesh motion in the modelling of fluid-structure interaction. Comput Mech 43:81-0MATH View Article
    20.Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198:3534-550MATH MathSciNet View Article
    21.Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009) Computational fluid-structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45:77-9MATH MathSciNet View Article
    22.Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid-structure interaction simulation of cerebral aneurysms. Comput Mech 46:3-6MATH MathSciNet View Article
    23.Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid-structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9:481-98View Article
    24.Bazilevs Y, Hsu M-C, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar TE (2011) 3D simulation of wind turbine rotors at full scale. Part I: geometry model
  • 作者单位:Kenji Takizawa (1)
    Tayfun E. Tezduyar (2)
    Ryan Kolesar (2)

    1. Department of Modern Mechanical Engineering, Waseda Institute for Advanced Study, Waseda University, 1-6-1 Nishi-Waseda, Shinjuku-ku, Tokyo, 169-8050, Japan
    2. Department of Mechanical Engineering, Rice University, MS 321 6100 Main Street, Houston, TX, 77005, USA
  • 刊物类别:Engineering
  • 刊物主题:Theoretical and Applied Mechanics
    Numerical and Computational Methods in Engineering
    Computational Science and Engineering
    Mechanics, Fluids and Thermodynamics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0924
文摘
The space–time fluid–structure interaction (STFSI) methods for parachute modeling are now capable of bringing reliable analysis to spacecraft parachutes, which pose formidable computational challenges. A number of special FSI methods targeting spacecraft parachutes complement the STFSI core computational technology in addressing these challenges. Until recently, these challenges were addressed for the Orion spacecraft main parachutes, which are the parachutes used for landing, and in the incompressible-flow regime, which is where the main parachutes operate. At higher altitudes the Orion spacecraft will rely on drogue parachutes. These parachutes have a ribbon construction, and in FSI modeling this creates geometric and flow complexities comparable to those encountered in FSI modeling of the main parachutes, which have a ringsail construction. Like the main parachutes, the drogue parachutes will be used in multiple stages—two reefed stages and a fully-open stage. A reefed stage is where a cable along the parachute skirt constrains the diameter to be less than the diameter in the subsequent stage. After a period of time during the descent at the reefed stage, the cable is cut and the parachute disreefs (i.e. expands) to the next stage. The reefed stages and disreefing involve computational challenges beyond those in FSI modeling of fully-open drogue parachutes. We present the special modeling techniques we devised to address the computational challenges and the results from the computations carried out. The flight envelope of the Orion drogue parachutes includes regions where the Mach number is high enough to require a compressible-flow solver. We present a preliminary fluid mechanics computation for such a case.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700