用户名: 密码: 验证码:
Adaptive characteristics of a ciliateTetrahymena thermophila in endosymbiotic association with a green algaChlorella vulgaris derived in a long-term microcosm culture
详细信息    查看全文
  • 作者:Akiko Sano (1)
    Motoyasu Watanabe (1)
    Toshiyuki Nakajima (1)
  • 关键词:Chlorella ; endosymbiosis ; evolution ; microcosm ; starvation ; Tetrahymena
  • 刊名:Symbiosis
  • 出版年:2009
  • 出版时间:October 2009
  • 年:2009
  • 卷:47
  • 期:3
  • 页码:151-160
  • 全文大小:2583KB
  • 参考文献:1. Dolan, J. 1992. Mixotrophy in ciliates: a review of / Chlorella symbiosis and chloroplast retention. / Marine Microbial Food Webs 6: 115-32.
    2. Dolan, J. and Pérez, M.T. 2000. Costs, benefits and characteristics of mixotrophy in marine oligotrichs. / Freshwater Biology 45: 227-38. CrossRef
    3. Elliott, A.M. 1959. Biology of / Tetrahymena. / Annual Review of Microbiology 13: 79-6. CrossRef
    4. Finlay, B.J., Clarke, K.J., Cowling, A.J., Hindle, R.M., Rogerson, A., and Berninger, U-G. 1988. On the abundance and distribution of protozoa and their food in a productive freshwater pond. / European Journal of Protistology 23: 205-17.
    5. Gu, F., Chen, L., Ni, B., and Zhang, X. 2002. A comparative study on, the electron microscopic enzymo-cytochemistry of / Paramecium bursaria from light and dark cultures. / European Journal of Protistology 38: 267-78. CrossRef
    6. Hackett, J.D., Anderson, D.M., Erdner, D.L., and Bhattacharya D. 2004. Dinoflagellates: a remarkable evolutionary experiment. / American Journal of Botany 91: 1523-534. CrossRef
    7. Horiguchi, T. 2006. Algae and their chloroplasts with particular reference to the dinoflagellates. / Paleontological Research 10: 299-09. CrossRef
    8. Ishida, K. and Green, B.R. 2002. Second- and third-hand chloroplasts in dinoflagellates: Phylogeny of oxygen-evolving enhancer I (PsbO) protein reveals replacement of a nuclear-encoded plastid gene by that of a haptophyte tertiary endosymbiont. / Proceedings of the National Academy of Sciences 99: 9294-299. CrossRef
    9. Iwatsuki, K., Nishidoi, M., and Suehiro, K. 1998. Symbiotic / Chlorella enhances the thermal tolerance in / Paramecium bursaria. / Comparative Biochemistry and Physiology, Part A121: 405-09. CrossRef
    10. Jeon, K.W. and Lorch, I.J. 1967. Unusual intra-cellular bacterial infection in large, free-living amoebae. / Experimental Cell Research 48: 236-40. CrossRef
    11. Jeon, K.W. 1987. Change of cellular “pathogen-into required cell components. / Annals of the New York Academy of Sciences 503: 359-71. CrossRef
    12. Keeling, P.J. 2004. Diversity and evolutionary history of plastids and their hosts. / American Journal of Botany 91: 1481-493. CrossRef
    13. Laybourn-Parry, J., Perriss, S.J., Seaton G.G.R., and Rohozinski J. 1997. A mixotrophic ciliate as a major contributor to plankton photosynthesis in Australian lakes. / Limnology and Oceanography 42: 1463-467. CrossRef
    14. Margulis, L. 1993. / Symbiosis in Cell Evolution. 2nd Ed. Freeman W.H., New York, 452 pp.
    15. Muscatine, L., Karakashian, S.J., and Karakashian, M.W. 1967. Soluble extracellular products of algae symbiotic with a ciliate, a sponge and a mutant Hydra. / Comparative Biochemistry and Physiology 20: 1-2. CrossRef
    16. Nakajima, T., Sano, A., and Matsuoka, H. 2008. Auto-/heterotrophic endosymbiosis evolves in a mature stage of ecosystem development in a microcosm composed of an alga, a bacterium, and a ciliate. / BioSystems doi: I0.1016/j.biosystems.2008.12.006
    17. Nanney, D.L. and McCoy, J.W. 1976. Characterization of the species of the / Tetrahymena pyriformis complex. / Transactions of the American Microscopical Society 95: 664-82. CrossRef
    18. Okamoto, N and Inouye, I. 2005. A secondary symbiosis in progress? / Science 310: 14. CrossRef
    19. Palmer, J.D. 2003. The symbiotic birth and spread of plastids: how many times and whodunit? / Journal of Phycology 39: 4-2. CrossRef
    20. Pellegrini, M. 1980. Three-dimensional reconstruction of organelles in / Euglena gracilis Z. II. Qualitative and quantitative changes of chloroplasts and mitochondrial reticulum in synchronous cultures during bleaching. / Journal of Cell Science 46: 313-40.
    21. Pierce R. W. and Turner J.T. 1992. Ecology of planktonic ciliates in marine food webs. / Reviews in Aquatic Sciences 6: 139-81.
    22. Reisser, W. 1986. Endosymbiotic associations of freshwater protozoa and algae. / Progress in Protistology 1: 195-14.
    23. Reisser, W. 1993. Green ciliates: principles of symbiosis formation between autotrophic and heterotrophic partners. In: / Origins of Plastids. Lewin, R.A., ed. Chapman & Hall, London, pp. 27-3.
    24. Saldarriaga, J.F., Taylor, F.J.R., Keeling, P.J., and Cavalier-Smith, T. 2001. Dinoflagellate nuclear SSU rRNA phylogeny suggests multiple plastid losses and replacements. / Journal of Molecular Evolution 53: 204-13. CrossRef
    25. Schnepf, E. 1993. From prey via endosymbiont to plastid: comparative studies in dinoflagellates. In: / Origins of Plastids. Lewin, R.A., ed. Chapman & Hall, London, pp. 53-6.
    26. Siegel, R. W. 1960. Hereditary endosymbiosis in / Paramecium bursaria. / Experimental Cell Research 19: 239-52. CrossRef
    27. Stoecker, D.K., Michaels, A.E., and Davis, L.H. 1987. Large proportion of marine planktonic ciliates found to contain functional chloroplasts. / Nature 326: 790-92. CrossRef
    28. Weis, D. 1969. Regulation of host and symbiont population size in / Paramecium bursaria. / Cellular and Molecular Lift Sciences 25: 664-66. CrossRef
    29. Weis, D. 1977. Synchronous development of symbiotic / Chlorella within / Paramecium bursaria. / Transactions of the American Microscopical Society 96: 82-6. CrossRef
    30. Woelfl, S. and Geller, W. 2002. / Chlorella-bearing ciliates dominate in an oligotrophic North Patagonian lake (Lake Pirehueico, Chile): abundance, biomass and symbiotic photosynthesis. / Freshwater Biology 47: 231-42. CrossRef
  • 作者单位:Akiko Sano (1)
    Motoyasu Watanabe (1)
    Toshiyuki Nakajima (1)

    1. Department of Biology, Ehime University, Bunkyo-cho 2-5, 790-8577, Matsuyama, Japan
文摘
We investigated directly an early stage of the development of an endosymbiosis between an alga and a ciliate, beginning from a non-associated stage by conducting a long-term microcosm culture composed of a green alga (Chlorella vulgaris), a bacterium (Escherichia coli) and a ciliate (Tetrahymena thermophila) for three years. During this culture,Chlorella-harboringTetrahymena appeared and increased in frequency. We examined the adaptive characteristics of theT. thermophila in association with theC. vulgaris derived from a well-established microcosm culture maintained for 1164-400 days, and compared it with the original culture ofT. thermophila. TheT. thermophila with the associated, intracellularC. vulgaris grew at a lower density ofE. coli than the originalT. thermophila with the originalC. vulgaris, and the former survived longer than the latter in the absence ofE. coli. These results suggest that this induced algal-ciliate association confers some fitness advantage at least to the host under the conditions of less or no available food such asE. coli. Although the algal-ciliate association is not completely stable, this quasi-stable association may enable the host to exploit a new niche through the advantages of mixotrophy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700