用户名: 密码: 验证码:
Murine pulmonary responses after sub-chronic exposure to aluminum oxide-based nanowhiskers
详细信息    查看全文
  • 作者:Andrea Adamcakova-Dodd (1)
    Larissa V Stebounova (2)
    Patrick T O’Shaughnessy (1)
    Jong Sung Kim (3)
    Vicki H Grassian (2) (3)
    Peter S Thorne (1) (3)
  • 关键词:Aluminum ; Nanowhiskers ; High aspect ratio nanomaterial ; Inhalation ; Murine model ; Pulmonary response ; Toxicity
  • 刊名:Particle and Fibre Toxicology
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:9
  • 期:1
  • 全文大小:887KB
  • 参考文献:1. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H: <strong class="a-plus-plus">One-Dimensional Nanostructures: Synthesis, characterization, and applications.strong> / Adv Mater 2003,<strong class="a-plus-plus">15strong>(5)<strong class="a-plus-plus">:strong>353-89. ss="external" href="http://dx.doi.org/10.1002/adma.200390087">CrossRef
    2. Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdorster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker NJ, Warheit DB: <strong class="a-plus-plus">Safe handling of nanotechnology.strong> / Nature 2006,<strong class="a-plus-plus">444strong>(7117)<strong class="a-plus-plus">:strong>267-69. ss="external" href="http://dx.doi.org/10.1038/444267a">CrossRef
    3. Elder A, Yang H, Gwiazda R, Teng X, Thurston S, He H, Oberd?rster G: <strong class="a-plus-plus">Testing nanomaterials of unknown toxicity: an example based on platinum nanoparticles of different shapes.strong> / Adv Mater 2007,<strong class="a-plus-plus">19strong>(20)<strong class="a-plus-plus">:strong>3124-129. ss="external" href="http://dx.doi.org/10.1002/adma.200701962">CrossRef
    4. Tomatis M, Turci F, Ceschino R, Riganti C, Gazzano E, Martra G, Ghigo D, Fubini B: <strong class="a-plus-plus">High aspect ratio materials: role of surface chemistry vs. length in the historical "long and short amosite asbestos fibers".strong> / Inhal Toxicol 2010,<strong class="a-plus-plus">22strong>(12)<strong class="a-plus-plus">:strong>984-98. ss="external" href="http://dx.doi.org/10.3109/08958378.2010.504243">CrossRef
    5. Donaldson K, Murphy FA, Duffin R, Poland CA: <strong class="a-plus-plus">Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma.strong> / Particle and fibre toxicology 2010, <strong class="a-plus-plus">7:strong>5. ss="external" href="http://dx.doi.org/10.1186/1743-8977-7-5">CrossRef
    6. Turci F, Tomatis M, Lesci IG, Roveri N, Fubini B: <strong class="a-plus-plus">The iron-related molecular toxicity mechanism of synthetic asbestos nanofibres: A model study for high-aspect-ratio nanoparticles.strong> / Chemistry (Weinheim an der Bergstrasse, Germany)
    7. Tran CL, Hankin SM, Ross B, Aitken RJ, Jones AD, Donaldson K, Stone V, Tantra R: / An outline scoping study to detrmine whether or not high-aspect-ration nanoparticles (HARN) should raise the same concerns as do asbesots fibers. Institute of Occupational Medicine, Edinburgh; 2008.
    8. Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, Stone V, Brown S, Macnee W, Donaldson K: <strong class="a-plus-plus">Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study.strong> / Nat Nanotechnol 2008,<strong class="a-plus-plus">3strong>(7)<strong class="a-plus-plus">:strong>423-28. ss="external" href="http://dx.doi.org/10.1038/nnano.2008.111">CrossRef
    9. Donaldson K, Murphy F, Schinwald A, Duffin R, Poland CA: <strong class="a-plus-plus">Identifying the pulmonary hazard of high aspect ratio nanoparticles to enable their safety-by-design.strong> / Nanomedicine (London, England) 2011,<strong class="a-plus-plus">6strong>(1)<strong class="a-plus-plus">:strong>143-56. ss="external" href="http://dx.doi.org/10.2217/nnm.10.139">CrossRef
    10. Murphy F A, Polland CA, Duffin R, Al-Jamal K T, Ali-Boucetta H, Nunes A, Byrne F, Prina-Mello A, Volkov Y, Li S, Mather SJ, Bianco A, Prato M, Macnee W, Wallace WA, Kostarelos K, Donaldson K: <strong class="a-plus-plus">Length-dependent retention of carbon nanotubes in the pleural space of mice initiates sustained inflammation and progressive fibrosis on the parietal pleura.strong> / Am J Pathol 2011,<strong class="a-plus-plus">178strong>(6)<strong class="a-plus-plus">:strong>2587-600. ss="external" href="http://dx.doi.org/10.1016/j.ajpath.2011.02.040">CrossRef
    11. Kane AB, Hurt RH: <strong class="a-plus-plus">Nanotoxicology: the asbestos analogy revisited.strong> / Nat Nanotechnol 2008,<strong class="a-plus-plus">3strong>(7)<strong class="a-plus-plus">:strong>378-79. ss="external" href="http://dx.doi.org/10.1038/nnano.2008.182">CrossRef
    12. Hamilton RF, Wu N, Porter D, Buford M, Wolfarth M, Holian A: <strong class="a-plus-plus">Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity.strong> / Particle and fibre toxicology 2009, <strong class="a-plus-plus">6:strong>35. ss="external" href="http://dx.doi.org/10.1186/1743-8977-6-35">CrossRef
    13. Liu X, Guo L, Morris D, Kane AB, Hurt RH: <strong class="a-plus-plus">TTargeted removal of bioavailable metal as a detoxification strategy for carbon nanotubes.strong> / Carbon N Y 2008,<strong class="a-plus-plus">46strong>(3)<strong class="a-plus-plus">:strong>489-00. ss="external" href="http://dx.doi.org/10.1016/j.carbon.2007.12.018">CrossRef
    14. Miller J, Cho KJ, McGehee M: <strong class="a-plus-plus">A realistic assessment of the commercialization of nanotechnology: A primer for lawyers and investors.strong> / Nanotechnology Law & Business 2004,<strong class="a-plus-plus">1strong>(1)<strong class="a-plus-plus">:strong>1-3.
    15. Meliorum Technologies I: / List of Applications. Aluminum Oxide Nanomaterials. , ; 2008. [cited 2011 10/27/2011]; Available from: slist.htm" class="a-plus-plus">http://www.meliorum.com/fullapplicationslist.htm
    16. Thorne PS: <strong class="a-plus-plus">Experimental grain dust atmospheres generated by wet and dry aerosolization techniques.strong> / American journal of industrial medicine 1994,<strong class="a-plus-plus">25strong>(1)<strong class="a-plus-plus">:strong>109-12. ss="external" href="http://dx.doi.org/10.1002/ajim.4700250129">CrossRef
    17. Weyel DA, Ellakkani M, Alarie Y, Karol M: <strong class="a-plus-plus">An aerosol generator for the resuspension of cotton dust.strong> / Toxicol Appl Pharmacol 1984,<strong class="a-plus-plus">76strong>(3)<strong class="a-plus-plus">:strong>544-47. ss="external" href="http://dx.doi.org/10.1016/0041-008X(84)90359-4">CrossRef
    18. Pettibone JM, Adamcakova-Dodd A, Thorne PS, O'Shaughnessy PT, Weydert JA, Grassian VH: <strong class="a-plus-plus">Inflammatory response of mice following inhalation exposure to iron and copper nanoparticles.strong> / Nanotoxicology 2008, <strong class="a-plus-plus">1:strong>1-6.
    19. Stopford W, Turner J, Cappellini D, Brock T: <strong class="a-plus-plus">Bioaccessibility testing of cobalt compounds.strong> / J Environ Monit 2003,<strong class="a-plus-plus">5strong>(4)<strong class="a-plus-plus">:strong>675-80. ss="external" href="http://dx.doi.org/10.1039/b302257a">CrossRef
    20. Cheng YS, Barr EB, Yeh HC: <strong class="a-plus-plus">A venturi disperser as a dry powder generator for inhalation studies.strong> / Inhal Toxicol 1989,<strong class="a-plus-plus">1strong>(4)<strong class="a-plus-plus">:strong>365-71. ss="external" href="http://dx.doi.org/10.3109/08958378909145239">CrossRef
    21. O'Shaughnessy PT, Achutan C, O'Neill ME, Thorne PS: <strong class="a-plus-plus">A small whole-body exposure chamber for laboratory use.strong> / Inhal Toxicol 2003,<strong class="a-plus-plus">15strong>(3)<strong class="a-plus-plus">:strong>251-63. ss="external" href="http://dx.doi.org/10.1080/08958370304504">CrossRef
    22. Murthy S, Adamcakova-Dodd A, Perry SS, Tephly LA, Keller RM, Metwali N, Meyerholz DK, Wang Y, Glogauer M, Thorne PS, Carter AB: <strong class="a-plus-plus">Modulation of reactive oxygen species by Rac1 or catalase prevents asbestos-induced pulmonary fibrosis.strong> / Am J Physiol 2009,<strong class="a-plus-plus">297strong>(5)<strong class="a-plus-plus">:strong>L846-5.
    23. Park H, Grassian VH: <strong class="a-plus-plus">Commercially manufactured engineered nanomaterials for environmental and health studies: important insights provided by independent characterization.strong> / Environmental toxicology and chemistry /SETAC 2010,<strong class="a-plus-plus">29strong>(3)<strong class="a-plus-plus">:strong>715-21. ss="external" href="http://dx.doi.org/10.1002/etc.72">CrossRef
    24. Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R: <strong class="a-plus-plus">Toxicity of silver nanoparticles to Chlamydomonas reinhardtii.strong> / Environ Sci Technol 2008,<strong class="a-plus-plus">42strong>(23)<strong class="a-plus-plus">:strong>8959-964. ss="external" href="http://dx.doi.org/10.1021/es801785m">CrossRef
    25. Kloprogge JT, Duong LV, Wood BJ, Frost RL: <strong class="a-plus-plus">XPS study of the major minerals in bauxite: gibbsite, bayerite and (pseudo-)boehmite.strong> / J Colloid Interface Sci 2006,<strong class="a-plus-plus">296strong>(2)<strong class="a-plus-plus">:strong>572-76. ss="external" href="http://dx.doi.org/10.1016/j.jcis.2005.09.054">CrossRef
    26. Asgharian B, Price OT: <strong class="a-plus-plus">Airflow distribution in the human lung and its influence on particle deposition.strong> / Inhal Toxicol 2006,<strong class="a-plus-plus">18strong>(10)<strong class="a-plus-plus">:strong>795-01. ss="external" href="http://dx.doi.org/10.1080/08958370600748687">CrossRef
    27. Cassee FR, Freijer JI, Subramaniam R, Asgharian B, Miller FJ, van Bree L, Rombout PJA: / Development of a model for human and rat airway particle deposition: implications for risk assessment 1999. Dutch National Institute of Public Health and Environment (RIVM), Bilthoven, the Netherlands; 1999.
    28. Stone KC, Mercer RR, Gehr P, Stockstill B, Crapo JD: <strong class="a-plus-plus">Allometric relationships of cell numbers and size in the mammalian lung.strong> / American journal of respiratory cell and molecular biology 1992,<strong class="a-plus-plus">6strong>(2)<strong class="a-plus-plus">:strong>235-43.
    29. Grassian VH, O'Shaughnessy PT, Adamcakova-Dodd A, Pettibone JM, Thorne PS: <strong class="a-plus-plus">Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm.strong> / Environ Heal Perspect 2007,<strong class="a-plus-plus">115strong>(3)<strong class="a-plus-plus">:strong>397-02. ss="external" href="http://dx.doi.org/10.1289/ehp.9469">CrossRef
    30. Grassian VH, Adamcakova-Dodd A, Pettibone JM, O'Shaughnessy PT, Thorne PS: <strong class="a-plus-plus">Inflammatory response of mice to manufactured titanium dioxide nanoparticles: Comparison of size effects through different exposure routes.strong> / Nanotoxicology 2007,<strong class="a-plus-plus">1strong>(3)<strong class="a-plus-plus">:strong>211-26. ss="external" href="http://dx.doi.org/10.1080/17435390701694295">CrossRef
    31. Stebounova LV, Adamcakova-Dodd A, Kim JS, Park H, O'Shaughnessy PT, Grassian VH, Thorne PS: <strong class="a-plus-plus">Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model.strong> / Particle and fibre toxicology 2011,<strong class="a-plus-plus">8strong>(1)<strong class="a-plus-plus">:strong>5. ss="external" href="http://dx.doi.org/10.1186/1743-8977-8-5">CrossRef
    32. Kim JS, Adamcakova-Dodd A, O'Shaughnessy PT, Grassian VH, Thorne PS: <strong class="a-plus-plus">Effects of copper nanoparticle exposure on host defense in a murine pulmonary infection model.strong> / Particle and fibre toxicology 2011, <strong class="a-plus-plus">8:strong>29. ss="external" href="http://dx.doi.org/10.1186/1743-8977-8-29">CrossRef
    33. Schmoll LH, Elzey S, Grassian VH, O'Shaughnessy PT: <strong class="a-plus-plus">Nanoparticle aerosol generation methods from bulk powders for inhalation exposure studies.strong> / Nanotoxicology 2009,<strong class="a-plus-plus">3strong>(4)<strong class="a-plus-plus">:strong>265-75. ss="external" href="http://dx.doi.org/10.3109/17435390903121931">CrossRef
    34. Kaegi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, Zuleeg S, Simmler H, Brunner S, Vonmont H, Burkhardt M, Boller M: <strong class="a-plus-plus">Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment.strong> / Environ Pollut 2008,<strong class="a-plus-plus">156strong>(2)<strong class="a-plus-plus">:strong>233-39. ss="external" href="http://dx.doi.org/10.1016/j.envpol.2008.08.004">CrossRef
    35. Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE: <strong class="a-plus-plus">Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties.strong> / ACS nano 2008,<strong class="a-plus-plus">2strong>(10)<strong class="a-plus-plus">:strong>2121-134. ss="external" href="http://dx.doi.org/10.1021/nn800511k">CrossRef
    36. Muller KH, Kulkarni J, Motskin M, Goode A, Winship P, Skepper JN, Ryan MP, Porter AE: <strong class="a-plus-plus">pH-dependent toxicity of high aspect ratio ZnO nanowires in macrophages due to intracellular dissolution.strong> / ACS nano 2010,<strong class="a-plus-plus">4strong>(11)<strong class="a-plus-plus">:strong>6767-779. ss="external" href="http://dx.doi.org/10.1021/nn101192z">CrossRef
    37. Kraemer SM, Chiu , Van Q, Hering JG: <strong class="a-plus-plus">Influence of pH and competitive adsorption on the kinetics of ligand-promoted dissolution of aluminum oxide.strong> / Environ Sci Technol 1998,<strong class="a-plus-plus">32strong>(19)<strong class="a-plus-plus">:strong>2876-882. ss="external" href="http://dx.doi.org/10.1021/es980253g">CrossRef
    38. Furrer G, Stumm W: <strong class="a-plus-plus">The coordination chemistry of weathering: I. Dissolution kinetics of alumina and beryllium oxide.strong> / Geochimica et Cosmochimica Acta 1986,<strong class="a-plus-plus">50strong>(9)<strong class="a-plus-plus">:strong>1847-860. ss="external" href="http://dx.doi.org/10.1016/0016-7037(86)90243-7">CrossRef
    39. Johnson SB, Brown GE, Healy TW, Scales PJ: <strong class="a-plus-plus">Adsorption of organic matter at mineral/water interfaces. 6. Effect of inner-sphere versus outer-sphere adsorption on colloidal stability.strong> / Langmuir 2005,<strong class="a-plus-plus">21strong>(14)<strong class="a-plus-plus">:strong>6356-365. ss="external" href="http://dx.doi.org/10.1021/la047030q">CrossRef
    40. Martin RB: <strong class="a-plus-plus">Citrate binding of Al3+ and Fe3+.strong> / J Inorg Biochem 1986,<strong class="a-plus-plus">28strong>(2-)<strong class="a-plus-plus">:strong>181-87. ss="external" href="http://dx.doi.org/10.1016/0162-0134(86)80081-2">CrossRef
    41. Blais MJ, Berthon G: <strong class="a-plus-plus">Citrate interactions in blood plasma. Quantitative study of the metal ion equilibriums in the zinc - citrate -histidinate, -glutaminate and -threoninate systems and computer simulation of the ability of citrate to mobilize the low molecular weight fraction of zinc.strong> / Inorganica Chimica Acta 1982,<strong class="a-plus-plus">67strong>(3)<strong class="a-plus-plus">:strong>109-15. ss="external" href="http://dx.doi.org/10.1016/S0020-1693(00)85051-3">CrossRef
    42. Pauluhn J: <strong class="a-plus-plus">Pulmonary toxicity and fate of agglomerated 10 and 40?nm aluminum oxyhydroxides following 4-week inhalation exposure of rats: toxic effects are determined by agglomerated, not primary particle size.strong> / Toxicol Sci 2009,<strong class="a-plus-plus">109strong>(1)<strong class="a-plus-plus">:strong>152-67. ss="external" href="http://dx.doi.org/10.1093/toxsci/kfp046">CrossRef
    43. Cullen RT, Tran CL, Buchanan D, Davis JM, Searl A, Jones AD, Donaldson K: <strong class="a-plus-plus">Inhalation of poorly soluble particles. I. Differences in inflammatory response and clearance during exposure.strong> / Inhal Toxicol 2000,<strong class="a-plus-plus">12strong>(12)<strong class="a-plus-plus">:strong>1089-111. ss="external" href="http://dx.doi.org/10.1080/08958370050166787">CrossRef
    44. Duffin R, Tran L, Brown D, Stone V, Donaldson K: <strong class="a-plus-plus">Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: highlighting the role of particle surface area and surface reactivity.strong> / Inhal Toxicol 2007,<strong class="a-plus-plus">19strong>(10)<strong class="a-plus-plus">:strong>849-56. ss="external" href="http://dx.doi.org/10.1080/08958370701479323">CrossRef
    45. Tran CL, Buchanan D, Cullen RT, Searl A, Jones AD, Donaldson K: <strong class="a-plus-plus">Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance.strong> / Inhal Toxicol 2000,<strong class="a-plus-plus">12strong>(12)<strong class="a-plus-plus">:strong>1113-126. ss="external" href="http://dx.doi.org/10.1080/08958370050166796">CrossRef
    46. Lanone S, Rogerieux F, Geys J, Dupont A, Maillot-Marechal E, Boczkowski J, Lacroix G, Hoet P: <strong class="a-plus-plus">Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines.strong> / Particle and fibre toxicology 2009, <strong class="a-plus-plus">6:strong>14. ss="external" href="http://dx.doi.org/10.1186/1743-8977-6-14">CrossRef
    47. Warheit DB, Webb TR, Sayes CM, Colvin VL, Reed KL: <strong class="a-plus-plus">Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area.strong> / Toxicol Sci 2006,<strong class="a-plus-plus">91strong>(1)<strong class="a-plus-plus">:strong>227-36. ss="external" href="http://dx.doi.org/10.1093/toxsci/kfj140">CrossRef
    48. Watanabe M, Okada M, Kudo Y, Tonori Y, Niitsuya M, Sato T, Aizawa Y, Kotani M: <strong class="a-plus-plus">Differences in the effects of fibrous and particulate titanium dioxide on alveolar macrophages of Fischer 344 rats.strong> / J Toxicol Environ Heal 2002,<strong class="a-plus-plus">65strong>(15)<strong class="a-plus-plus">:strong>1047-060. ss="external" href="http://dx.doi.org/10.1080/152873902760125219">CrossRef
    49. Brown DM, Kinloch IA, Bangert U, Windle AH, Walter DM, Walker GS, Scotchford CA, Donaldson K, Stone V: <strong class="a-plus-plus">An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammatory mediators and frustrated phagocytosis.strong> / Carbon 2007,<strong class="a-plus-plus">45strong>(9)<strong class="a-plus-plus">:strong>1743-756. ss="external" href="http://dx.doi.org/10.1016/j.carbon.2007.05.011">CrossRef
  • 作者单位:Andrea Adamcakova-Dodd (1)
    Larissa V Stebounova (2)
    Patrick T O’Shaughnessy (1)
    Jong Sung Kim (3)
    Vicki H Grassian (2) (3)
    Peter S Thorne (1) (3)

    1. Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, 52242, USA
    2. Department of Chemistry, University of Iowa, Iowa City, IA, 52242, USA
    3. Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, 52242, USA
文摘
Background Aluminum oxide-based nanowhiskers (AO nanowhiskers) have been used in manufacturing processes as catalyst supports, flame retardants, adsorbents, or in ceramic, metal and plastic composite materials. They are classified as high aspect ratio nanomaterials. Our aim was to assess in vivo toxicity of inhaled AO nanowhisker aerosols. Methods Primary dimensions of AO nanowhiskers specified by manufacturer were 2-?nm x 2800?nm. The aluminum content found in this nanomaterial was 30% [mixed phase material containing Al(OH)3sub> and AlOOH]. Male mice (C57Bl/6?J) were exposed to AO nanowhiskers for 4?hrs/day, 5?days/wk for 2 or 4 wks in a dynamic whole body exposure chamber. The whiskers were aerosolized with an acoustical dry aerosol generator that included a grounded metal elutriator and a venturi aspirator to enhance deagglomeration. Average concentration of aerosol in the chamber was 3.3?±-.6?mg/m3 and the mobility diameter was 150?±-.6?nm. Both groups of mice (2 or 4 wks exposure) were necropsied immediately after the last exposure. Aluminum content in the lung, heart, liver, and spleen was determined. Pulmonary toxicity assessment was performed by evaluation of bronchoalveolar lavage (BAL) fluid (enumeration of total and differential cells, total protein, activity of lactate dehydrogenase [LDH] and cytokines), blood (total and differential cell counts), lung histopathology and pulmonary mechanics. Results Following exposure, mean Al content of lungs was 0.25, 8.10 and 15.37?μg/g lung (dry wt) respectively for sham, 2 wk and 4 wk exposure groups. The number of total cells and macrophages in BAL fluid was 2-times higher in animals exposed for 2 wks and 6-times higher in mice exposed for 4 wks, compared to shams (p-lt;-.01, p-lt;-.001, respectively). However no neutrophilic inflammation in BAL fluid was found and neutrophils were below 1% in all groups. No significant differences were found in total protein, activity of LDH, or cytokines levels (IL-6, IFN-γ, MIP-1α, TNF-α, and MIP-2) between shams and exposed mice. Conclusions Sub-chronic inhalation exposures to aluminum-oxide based nanowhiskers induced increased lung macrophages, but no inflammatory or toxic responses were observed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700