用户名: 密码: 验证码:
Dielectric Relaxation Behavior of Exfoliated Graphite Nanoplatelet-Filled EPDM Vulcanizates
详细信息    查看全文
  • 作者:Bikash Kumar Dash ; P. Ganga Raju Achary ; Nimai C. Nayak…
  • 关键词:EPDM ; xGnP ; dielectric ; nyquist plot
  • 刊名:Journal of Electronic Materials
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:46
  • 期:1
  • 页码:563-572
  • 全文大小:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Optical and Electronic Materials; Characterization and Evaluation of Materials; Electronics and Microelectronics, Instrumentation; Solid State Physics;
  • 出版者:Springer US
  • ISSN:1543-186X
  • 卷排序:46
文摘
The present study investigates the dielectric relaxation and mechanical behavior of exfoliated graphite nanoplatelet (XgnP)-filled ethylene-propylene-diene terpolymer (EPDM) vulcanizates with variation in frequency, temperature and xGnP loading. The samples were prepared by a solution–cast method using toluene as the solvent followed by compression molding. The enhanced permittivity and ac conductivity which sharply changes above 20 wt.% of xGnP loading shows the conducting behavior of the composites. The real parts of the impedance for the vulcanizates were continuously decreased up to 40 wt.% whereas the complex part shows an increasing tendency at the same loading expressing the increase in the conductivity of the vulcanizates. The percolation threshold of the xGnP-loaded EPDM vulcanizates was at 25 wt.% of xGnP loading. A more prominent effect of temperature on dielectric loss tangent is observed at 85°C, and 100°C. The ac conductivity increases with the rise in temperature. The Nyquist plots of xGnP-reinforced EPDM show the small intercepts on the Z′ axis at 85°C, and 100°C for the 40 wt.% loading. The experimental complex impedance plots were in good agreement with the model-fitted plots. The tensile strength of 15 wt.% xGnP-filled vulcanizate increases up to 12 times more than the unfilled EPDM whereas the elongation at break (%) increases up to 700% at the same loading of xGnP. Young’s modulus has been doubled and quadrupled for the vulcanizates with 20 and 40 wt.% of xGnPs, respectively, compared to the pure EPDM samples. The results indicate that the xGnP–EPDM conductive composite can find applications in the area of antistatic material, electrostatic discharge gaskets, etc.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700