用户名: 密码: 验证码:
EGFR inhibitors and autophagy in cancer treatment
详细信息    查看全文
  • 作者:Jie Cui (1) (2)
    Yun-Feng Hu (2)
    Xie-Min Feng (2)
    Tao Tian (1)
    Ya-Huan Guo (4)
    Jun-Wei Ma (2)
    Ke-Jun Nan (1)
    Hong-Yi Zhang (1) (3)
  • 关键词:EGFR ; TKI ; Gefitinib ; Erlotinib ; Cetuximab ; EGFR ; Autophagy ; Resistance
  • 刊名:Tumor Biology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:35
  • 期:12
  • 页码:11701-11709
  • 全文大小:525 KB
  • 参考文献:1. De Duve C, Wattiaux R. Functions of lysosomes. Annu Rev Physiol. 1966;28:435鈥?2. CrossRef
    2. Klionsky DJ. Autophagy revisited: a conversation with Christian de Duve. Autophagy. 2008;4(6):740鈥?. CrossRef
    3. Yang Z, Klionsky DJ. Eaten alive: a history of macroautophagy. Nat Cell Biol. 2010;12(9):814鈥?2. CrossRef
    4. Hu YL, Jahangiri A, Delay M, Aghi MK. Tumor cell autophagy as an adaptive response mediating resistance to treatments like anti-angiogenic therapy. Cancer Res. 2012;72(17):4294鈥?. CrossRef
    5. Martin DE, Hall MN. The expanding TOR signaling network. Curr Opin Cell Biol. 2005;17(2):158鈥?6. CrossRef
    6. Sonenberg N, Hay N. Upstream and downstream of mTOR. Genes Dev. 2004;18:1926鈥?5. CrossRef
    7. Dowling R, Topisirovic I, Fonseca B, Sonenberg N. Dissecting the role of mTOR: lessons from mTOR inhibitors. Biochim Biophys Acta. 1804;2010:433鈥?.
    8. Alers S, L枚ffler AS, Wesselborg S, Stork B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol. 2012;32(1):2鈥?1. CrossRef
    9. Pattingre S, Espert L, Biard-Piechaczyk M, Codogno P. Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie. 2008;90(2):313鈥?3. CrossRef
    10. Fu LL, Cheng Y, Liu B. Beclin-1: autophagic regulator and therapeutic target in cancer. Int J Biochem Cell Biol. 2013;45(5):921鈥?. CrossRef
    11. Zinzalla V, Stracka D, Oppliger W, Hall MN. Activation of mTORC2 by association with the ribosome. Cell. 2011;144:757鈥?8. CrossRef
    12. Li L, Chen Y, Gibson SB. Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation. Cell Signal. 2013;25(1):50鈥?5. CrossRef
    13. Kimmelman AC. The dynamic nature of autophagy in cancer. Genes Dev. 2011;25(19):1999鈥?010. CrossRef
    14. Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB, et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol. 2004;6(12):1221鈥?. CrossRef
    15. Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, et al. Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science. 2004;304(5676):1500鈥?. CrossRef
    16. Kubisch J, T眉rei D, F枚ldv谩ri-Nagy L, Dunai ZA, Zs谩kai L, Varga ML, et al. Complex regulation of autophagy in cancer鈥攊ntegrated approaches to discover the networks that hold a double-edged sword. Semin Cancer Biol. 2013;23(4):252鈥?1. CrossRef
    17. Sui X, Chen R, Wang Z, Huang Z, Kong N, Zhang M, et al. Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis. 2013;4:e838. CrossRef
    18. Wells A. EGF receptor. Int J Biochem Cell Biol. 1999;31(6):637鈥?3. CrossRef
    19. Vogt PK, Gymnopoulos M, Hart JR. PI3-kinase and cancer: changing accents. Curr Opin Genet Dev. 2009;19(1):12鈥?. CrossRef
    20. Yuan TL, Cantley LC. PI3K pathway alterations in cancer: variations on a theme. Oncogene. 2008;27(41):5497鈥?10. CrossRef
    21. Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature. 2006;441(7092):424鈥?0. CrossRef
    22. Wang RC, Wei Y, An Z, Zou Z, Xiao G, Bhagat G, et al. Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science. 2012;338(6109):956鈥?. CrossRef
    23. Santi SA, Lee H. Ablation of Akt2 induces autophagy through cell cycle arrest, the downregulation of p70S6K, and the deregulation of mitochondria in MDA-MB231 cells. PLoS One. 2011;6(1):e14614. CrossRef
    24. Wei Y, Zou Z, Becker N, Anderson M, Sumpter R, Xiao G, et al. EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell. 2013;154(6):1269鈥?4. CrossRef
    25. Furuta S, Hidaka E, Ogata A, Yokota S, Kamata T. Ras is involved in the negative control of autophagy through the class I PI3-kinase. Oncogene. 2004;23(22):3898鈥?04. CrossRef
    26. Ogier-Denis E, Pattingre S, El Benna J, Codogno P. Erk1/2-dependent phosphorylation of Galpha-interacting protein stimulates its GTPase accelerating activity and autophagy in human colon cancer cells. J Biol Chem. 2000;275(50):39090鈥?. CrossRef
    27. Pattingre S, Bauvy C, Codogno P. Amino acids interfere with the ERK1/2-dependent control of macroautophagy by controlling the activation of Raf-1 in human colon cancer HT-29 cells. J Biol Chem. 2003;278(19):16667鈥?4. CrossRef
    28. Corcelle E, Nebout M, Bekri S, Gauthier N, Hofman P, Poujeol P, et al. Disruption of autophagy at the maturation step by the carcinogen lindane is associated with the sustained mitogen-activated protein kinase/extracellular signal-regulated kinase activity. Cancer Res. 2006;66(13):6861鈥?0. CrossRef
    29. Stevens C, Lin Y, Harrison B, Burch L, Ridgway RA, Sansom O, et al. Peptide combinatorial libraries identify TSC2 as a death-associated protein kinase (DAPK) death domain-binding protein and reveal a stimulatory role for DAPK in mTORC1 signaling. J Biol Chem. 2009;284(1):334鈥?4. CrossRef
    30. Weihua Z, Tsan R, Huang WC, Wu Q, Chiu CH, Fidler IJ, et al. Survival of cancer cells is maintained by EGFR independent of its kinase activity. Cancer Cell. 2008;13(5):385鈥?3. CrossRef
    31. Boerner JL, Demory ML, Silva C, Parsons SJ. Phosphorylation of Y845 on the epidermal growth factor receptor mediates binding to the mitochondrial protein cytochrome c oxidase subunit II. Mol Cell Biol. 2004;24(16):7059鈥?1. CrossRef
    32. Yao Y, Wang G, Li Z, Yan B, Guo Y, Jiang X, et al. Mitochondrially localized EGFR is independent of its endocytosis and associates with cell viability. Acta Biochim Biophys Sin (Shanghai). 2010;42(11):763鈥?0. CrossRef
    33. Yue X, Song W, Zhang W, Chen L, Xi Z, Xin Z, et al. Mitochondrially localized EGFR is subjected to autophagic regulation and implicated in cell survival. Autophagy. 2008;4(5):641鈥?. CrossRef
    34. Dreier A, Barth S, Goswami A, Weis J. Cetuximab induces mitochondrial translocalization of EGFRvIII, but not EGFR: involvement of mitochondria in tumor drug resistance? Tumour Biol. 2012;33(1):85鈥?4. CrossRef
    35. Cao X, Zhu H, Ali-Osman F, Lo HW. EGFR and EGFRvIII undergo stress- and EGFR kinase inhibitor-induced mitochondrial translocalization: a potential mechanism of EGFR-driven antagonism of apoptosis. Mol Cancer. 2011;10:26. CrossRef
    36. Khalil MY, Grandis JR, Shin DM. Targeting epidermal growth factor receptor: novel therapeutics in the management of cancer. Expert Rev Anticancer Ther. 2003;3(3):367鈥?0. CrossRef
    37. Herbst RS, Sandler AB. Overview of the current status of human epidermal growth factor receptor inhibitors in lung cancer. Clin Lung Cancer. 2004;6 Suppl 1:S7鈥揝19. CrossRef
    38. Fukuoka M, Yano S, Giaccone G, Tamura T, Nakagawa K, Douillard JY, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small cell lung cancer (The IDEAL 1 Trial) [corrected]. J Clin Oncol. 2003;12:2237鈥?6. CrossRef
    39. Perez-Soler R, Chachoua A, Hammond LA, Rowinsky EK, Huberman M, Karp D, et al. Determinants of tumor response and survival with erlotinib in patients with non-small-cell lung cancer. J Clin Oncol. 2004;22(16):3238鈥?7. CrossRef
    40. Thatcher N, Chang A, Parikh P, Rodrigues Pereira J, Ciuleanu T, von Pawel J, et al. Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet. 2005;366(9496):1527鈥?7. CrossRef
    41. Shepherd FA, Pereira RJ, Ciuleanu T, Tan EH, Hirsh V, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med. 2005;353(2):123鈥?2. CrossRef
    42. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350(21):2129鈥?9. CrossRef
    43. Pao W, Chmielecki J. Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat Rev Cancer. 2010;10(11):760鈥?4. CrossRef
    44. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316(5827):1039鈥?3. CrossRef
    45. Patel MR, Jay-Dixon J, Sadiq AA, Jacobson BA, Kratzke RA. Resistance to EGFR-TKI can be mediated through multiple signaling pathways converging upon cap-dependent translation in EGFR-wild type NSCLC. J Thorac Oncol. 2013;8(9):1142鈥?. CrossRef
    46. Xu Y, Liu H, Chen J, Zhou Q. Acquired resistance of lung adenocarcinoma to EGFR-tyrosine kinase inhibitors gefitinib and erlotinib. Cancer Biol Ther. 2010;9(8):572鈥?2. CrossRef
    47. Costanzo R, Piccirillo MC, Sandomenico C, Carillio G, Montanino A, Daniele G, et al. Gefitinib in non small cell lung cancer. J Biomed Biotechnol. 2011;2011:815269. CrossRef
    48. Jiang Z, Li C, Li F, Wang X. EGFR gene copy number as a prognostic marker in colorectal cancer patients treated with cetuximab or panitumumab: a systematic review and meta analysis. PLoS One. 2013;8(2):e56205. CrossRef
    49. Bourhis J, Lefebvre JL, Vermorken JB. Cetuximab in the management of locoregionally advanced head and neck cancer: expanding the treatment options? Eur J Cancer. 2010;46(11):1979鈥?9. CrossRef
    50. Qiu LX, Mao C, Zhang J, Zhu XD, Liao RY, Xue K, et al. Predictive and prognostic value of KRAS mutations in metastatic colorectal cancer patients treated with cetuximab: a meta-analysis of 22 studies. Eur J Cancer. 2010;46(15):2781鈥?. CrossRef
    51. Han W, Pan H, Chen Y, Sun J, Wang Y, Li J, et al. EGFR tyrosine kinase inhibitors activate autophagy as a cytoprotective response in human lung cancer cells. PLoS One. 2011;6(6):e18691. CrossRef
    52. Zou Y, Ling YH, Sironi J, Schwartz EL, Perez-Soler R, Piperdi B. The autophagy inhibitor chloroquine overcomes the innate resistance of wild-type EGFR non-small-cell lung cancer cells to erlotinib. J Thorac Oncol. 2013;8(6):693鈥?02. CrossRef
    53. Sakuma Y, Matsukuma S, Nakamura Y, Yoshihara M, Koizume S, Sekiguchi H, et al. Enhanced autophagy is required for survival in EGFR-independent EGFR-mutant lung adenocarcinoma cells. Lab Investig. 2013;93(10):1137鈥?6. CrossRef
    54. Moreira-Leite FF, Harrison LR, Mironov A, Roberts RA, Dive C. Inducible EGFR T790M-mediated gefitinib resistance in non-small cell lung cancer cells does not modulate sensitivity to PI103 provoked autophagy. J Thorac Oncol. 2010;5(6):765鈥?7. CrossRef
    55. Lee JG, Wu R. Combination erlotinib-cisplatin and Atg3-mediated autophagy in erlotinib resistant lung cancer. PLoS One. 2012;7(10):e48532. CrossRef
    56. Li YY, Lam SK, Mak JC, Zheng CY, Ho JC. Erlotinib-induced autophagy in epidermal growth factor receptor mutated non-small cell lung cancer. Lung Cancer. 2013;81(3):354鈥?1. CrossRef
    57. Crighton D, Wilkinson S. O鈥橮rey, Syed N, Smith P, Harrison PR, et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell. 2006;126(1):121鈥?4. CrossRef
    58. Crighton D, Wilkinson S, Ryan KM. DRAM links autophagy to p53 and programmed cell death. Autophagy. 2007;3(1):72鈥?. CrossRef
    59. O鈥橮rey J, Skommer J, Wilkinson S, Ryan KM. Analysis of DRAM-related proteins reveals evolutionarily conserved and divergent roles in the control of autophagy. Cell Cycle. 2009;8(14):2260鈥?. CrossRef
    60. Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D鈥橝melio M, et al. Regulation of autophagy by cytoplasmic p53. Nat Cell Biol. 2008;10(6):676鈥?7. CrossRef
    61. Bokobza SM, Jiang Y, Weber AM, Devery AM, Ryan AJ. Combining AKT inhibition with chloroquine and gefitinib prevents compensatory autophagy and induces cell death in EGFR mutated NSCLC cells. Oncotarget. 2014;5(13):4765鈥?8.
    62. Sobhakumari A, Schickling BM, Love-Homan L, Raeburn A, Fletcher EV, Case AJ, et al. NOX4 mediates cytoprotective autophagy induced by the EGFR inhibitor erlotinib in head and neck cancer cells. Toxicol Appl Pharmacol. 2013;272(3):736鈥?5. CrossRef
    63. Dragowska WH, Weppler SA, Wang JC, Wong LY, Kapanen AI, Rawji JS, et al. Induction of autophagy is an early response to gefitinib and a potential therapeutic target in breast cancer. PLoS One. 2013;8(10):e76503. CrossRef
    64. Eimer S, Belaud-Rotureau MA, Airiau K, Jeanneteau M, Laharanne E, V茅ron N, et al. Autophagy inhibition cooperates with erlotinib to induce glioblastoma cell death. Cancer Biol Ther. 2011;11(12):1017鈥?7. CrossRef
    65. Fung C, Chen X, Grandis JR, Duvvuri U. EGFR tyrosine kinase inhibition induces autophagy in cancer cells. Cancer Biol Ther. 2012;13(14):1417鈥?4. CrossRef
    66. Gorzalczany Y, Gilad Y, Amihai D, Hammel I, Sagi-Eisenberg R, Merimsky O. Combining an EGFR directed tyrosine kinase inhibitor with autophagy-inducing drugs: a beneficial strategy to combat non-small cell lung cancer. Cancer Lett. 2011;310(2):207鈥?5. CrossRef
    67. Chang CY, Kuan YH, Ou YC, Li JR, Wu CC, Pan PH, et al. Autophagy contributes to gefitinib-induced glioma cell growth inhibition. Exp Cell Res. 2014;327(1):102鈥?2. CrossRef
    68. Schmid K, Bago-Horvath Z, Berger W, Haitel A, Cejka D, Werzowa J, et al. Dual inhibition of EGFR and mTOR pathways in small cell lung cancer. Br J Cancer. 2010;103(5):622鈥?2. CrossRef
    69. Xu Z, Hang J, Hu J, Gao B. Gefitinib, an EGFR tyrosine kinase inhibitor, activates autophagy through AMPK in human lung cancer cells. J BUON. 2014;19(2):466鈥?3.
    70. La Monica S, Galetti M, Alfieri RR, Cavazzoni A, Ardizzoni A, Tiseo M, et al. Everolimus restores gefitinib sensitivity in resistant non-small cell lung cancer cell lines. Biochem Pharmacol. 2009;78(5):460鈥?. CrossRef
    71. Goldberg SB, Supko JG, Neal JW, Muzikansky A, Digumarthy S, Fidias P, et al. A phase I study of erlotinib and hydroxychloroquine in advanced non-small-cell lung cancer. J Thorac Oncol. 2012;7(10):1602鈥?. CrossRef
    72. Xinqun L, Zhen F. The epidermal growth factor receptor antibody cetuximab induces autophagy in cancer cells by downregulating HIF-1alpha and Bcl-2 and activating the beclin 1/Vps34 complex. Cancer Res. 2010;70(14):5942鈥?2. CrossRef
    73. Li X, Lu Y, Pan T, Fan Z. Roles of autophagy in cetuximab-mediated cancer therapy against EGFR. Autophagy. 2010;6(8):1066鈥?7. CrossRef
    74. Guo GF, Jiang WQ, Zhang B, Cai YC, Xu RH, Chen XX, et al. Autophagy-related proteins Beclin-1 and LC3 predict cetuximab efficacy in advanced colorectal cancer. World J Gastroenterol. 2011;17(43):4779鈥?6. CrossRef
  • 作者单位:Jie Cui (1) (2)
    Yun-Feng Hu (2)
    Xie-Min Feng (2)
    Tao Tian (1)
    Ya-Huan Guo (4)
    Jun-Wei Ma (2)
    Ke-Jun Nan (1)
    Hong-Yi Zhang (1) (3)

    1. Department of Oncology, The First Affiliated Hospital of Xi鈥檃n Jiaotong University, No. 277 Yanta West Road, Xi鈥檃n, 710061, Shaanxi Province, People鈥檚 Republic of China
    2. Department of Oncology, Yanan University Affiliated Hospital, Yan鈥檃n, Shaanxi Province, People鈥檚 Republic of China
    4. Department of Oncology, Shaanxi Province Cancer Hospital, Xi鈥檃n, Shaanxi Province, People鈥檚 Republic of China
    3. Department of Urology, Yanan University Affiliated Hospital, No. 43 Beida Street, Yan鈥檃n, 716000, Shaanxi Province, People鈥檚 Republic of China
  • 刊物主题:Cancer Research;
  • 出版者:Springer Netherlands
  • ISSN:1423-0380
文摘
Epidermal growth factor receptor (EGFR) inhibitor treatment is a strategy for cancer therapy. However, innate and acquired resistance is a major obstacle of the efficacy. Autophagy is a self-digesting process in cells, which is considered to be associated with anti-cancer drug resistance. The activation of EGFR can regulate autophagy through multiple signal pathways. EGFR inhibitors can induce autophagy, but the specific function of the induction of autophagy by EGFR inhibitors remains biphasic. On the one hand, autophagy induced by EGFR inhibitors acts as a cytoprotective response in cancer cells, and autophagy inhibitors can enhance the cytotoxic effects of EGFR inhibitors. On the other hand, a high level of autophagy after treatment of EGFR inhibitors can also result in autophagic cell death lacking features of apoptosis, and the combination of EGFR inhibitors with an autophagy inducer might be beneficial. Thus, autophagy regulation represents a promising approach for improving the efficacy of EGFR inhibitors in the treatment of cancer patients.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700