用户名: 密码: 验证码:
Assessment and improvement of mapping algorithms for non-matching meshes and geometries in computational FSI
详细信息    查看全文
  • 作者:Tianyang Wang ; Roland Wüchner ; Stefan Sicklinger…
  • 关键词:Non ; matching meshes ; Fluid ; structure interaction ; Mortar method ; Dual Lagrange multipliers ; Nonlinear beam FSI
  • 刊名:Computational Mechanics
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:57
  • 期:5
  • 页码:793-816
  • 全文大小:10,325 KB
  • 参考文献:1.Ahrem R, Beckert A, Wendland H (2007) Recovering rotations in aeroelasticity. J Fluids Struct 23(6):874–884CrossRef
    2.Bazilevs Y, Hsu MC, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar T (2011) 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics. Int J Numer Methods Fluids 65(1–3):207–235CrossRef MATH
    3.Bazilevs Y, Hsu MC, Kiendl J, Wüchner R, Bletzinger KU (2011) 3D simulation of wind turbine rotors at full scale. Part II: fluid-structure interaction modeling with composite blades. Int J Numer Methods Fluids 65(1–3):236–253CrossRef MATH
    4.Bazilevs Y, Hsu MC, Scott M (2012) Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249:28–41MathSciNet CrossRef
    5.Bazilevs Y, Hsu MC, Takizawa K, Tezduyar TE (2012) ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid-structure interaction. Math Model Methods Appl Sci 22(supp02):1230002CrossRef MATH
    6.Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid-structure interaction: methods and applications. Wiley, ChichesterCrossRef MATH
    7.Beckert A, Wendland H (2001) Multivariate interpolation for fluid-structure-interaction problems using radial basis functions. Aerosp Sci Technol 5(2):125–134CrossRef MATH
    8.Bernardi C, Maday Y, Patera AT (1994) A new nonconforming approach to domain decomposition: the mortar element method. In: Brezis H, Lions JL (eds) Nonlinear partial differential equations and their applications, vol XI. College de France Seminar. Longman, Harlow, pp 13–51
    9.Blasques JPAA, Bitsche R, Fedorov V, Eder MA (2013) Applications of the beam cross section analysis software (becas). In: Proceedings of the 26th nordic seminar on computational mechanics, pp 46–49
    10.Blom FJ (1998) A monolithical fluid-structure interaction algorithm applied to the piston problem. Comput Methods Appl Mech Eng 167(3):369–391MathSciNet CrossRef MATH
    11.de Boer A, van Zuijlen AH, Bijl H (2008) Comparison of conservative and consistent approaches for the coupling of non-matching meshes. Comput Methods Appl Mech Eng 197(49):4284–4297CrossRef MATH
    12.Bottasso C, Campagnolo F, Croce A, Tibaldi C (2013) Optimization-based study of bend-twist coupled rotor blades for passive and integrated passive/active load alleviation. Wind Energy 16(8):1149–1166
    13.Brenner SC, Scott R (2008) The mathematical theory of finite element methods, vol 15. Springer, New YorkMATH
    14.Chen H, Yu W, Capellaro M (2010) A critical assessment of computer tools for calculating composite wind turbine blade properties. Wind Energy 13(6):497–516CrossRef
    15.Cichosz T, Bischoff M (2011) Consistent treatment of boundaries with mortar contact formulations using dual lagrange multipliers. Comput Methods Appl Mech Eng 200(9):1317–1332MathSciNet CrossRef MATH
    16.Cordero-Gracia M, Gómez M, Valero E (2014) A radial basis function algorithm for simplified fluid-structure data transfer. Int J Numer Methods Eng 99(12):888–905MathSciNet CrossRef
    17.De Rosis A, Falcucci G, Ubertini S, Ubertini F (2013) A coupled lattice boltzmann-finite element approach for two-dimensional fluid-structure interaction. Comput Fluids 86:558–568MathSciNet CrossRef MATH
    18.Degroote J, Bruggeman P, Haelterman R, Vierendeels J (2008) Stability of a coupling technique for partitioned solvers in FSI applications. Comput truct 86(23):2224–2234CrossRef
    19.Farhat C, Lesoinne M, Le Tallec P (1998) Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: momentum and energy conservation, optimal discretization and application to aeroelasticity. Comput Methods Appl Mech Eng 157(1):95–114MathSciNet CrossRef MATH
    20.Farhat C, Van der Zee KG, Geuzaine P (2006) Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity. Comput Methods Appl Mech Eng 195(17):1973–2001MathSciNet CrossRef MATH
    21.Felippa C, Haugen B (2005) A unified formulation of small-strain corotational finite elements: I. theory. Comput Methods Appl Mech Eng 194(21):2285–2335CrossRef MATH
    22.Felippa C, Park K, Ross M (2010) A classification of interface treatments for FSI. In: Bungartz H-J, Mehl M, Schäfer M (eds) Fluid structure interaction II. Springer, Berlin
    23.Fernández MÁ, Moubachir M (2005) A Newton method using exact Jacobians for solving fluid-structure coupling. Comput Struct 83(2):127–142CrossRef
    24.Foley JD, van Dam A, Feiner SK, Hughes JF (1990) Computer graphics: principles and practice, 2nd edn. Addison-Wesley, ReadingMATH
    25.Hansen MOL, Sørensen JN, Voutsinas S, Sørensen N, Madsen HA (2006) State of the art in wind turbine aerodynamics and aeroelasticity. Prog Aerosp Sci 42(4):285–330CrossRef
    26.Hsu MC, Akkerman I, Bazilevs Y (2014) Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment. Wind Energy 17(3):461–481CrossRef
    27.Hsu MC, Bazilevs Y (2012) Fluid-structure interaction modeling of wind turbines: simulating the full machine. Comput Mech 50(6):821–833MathSciNet CrossRef MATH
    28.Jaiman R, Jiao X, Geubelle P, Loth E (2006) Conservative load transfer along curved fluid-solid interface with non-matching meshes. J Comput Phys 218(1):372–397CrossRef MATH
    29.Kindmann R, Kraus M (2004) Steel structures: sesign using FEM. Ernst & Sohn, Berlin
    30.Klöppel T, Popp A, Küttler U, Wall WA (2011) Fluid-structure interaction for non-conforming interfaces based on a dual mortar formulation. Comput Methods Appl Mech Eng 200(45):3111–3126MathSciNet CrossRef MATH
    31.Krenk S (2009) Non-linear modeling and analysis of solids and structures. Cambridge University Press, CambridgeCrossRef MATH
    32.Küttler U, Wall WA (2009) Vector extrapolation for strong coupling fluid-structure interaction solvers. J Appl Mech 76(2):021205CrossRef
    33.Li Z, Vu-Quoc L (2010) A mixed co-rotational 3D beam element formulation for arbitrarily large rotations. Adv Steel Constr 6(2):767–787
    34.Malcolm DJ, Laird DL (2007) Extraction of equivalent beam properties from blade models. Wind Energy 10(2):135–157CrossRef
    35.Michler C, Van Brummelen E, De Borst R (2005) An interface Newton–Krylov solver for fluid-structure interaction. Int J Numer Methods Fluids 47(10–11):1189–1195CrossRef MATH
    36.Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows: fluid-structure interactions. Int J Numer Methods Fluids 21(10):933–953CrossRef MATH
    37.Muja M, Lowe DG (2014) Scalable nearest neighbor algorithms for high dimensional data. Pattern Anal Mach Intell IEEE Trans 36:2227–2240CrossRef
    38.Palacios RS, Cesnik C (2008) Geometrically nonlinear theory of composite beams with deformable cross sections. AIAA J 46(2):439–450CrossRef
    39.Patil MJ, Hodges DH, S Cesnik CE (2001) Nonlinear aeroelasticity and flight dynamics of high-altitude long-endurance aircraft. J Aircr 38(1):88–94CrossRef
    40.Piperno S, Farhat C (2001) Partitioned procedures for the transient solution of coupled aeroelastic problems-Part II: energy transfer analysis and three-dimensional applications. Comput Methods Appl Mech Eng 190(24):3147–3170CrossRef MATH
    41.Popp A, Seitz A, Gee MW, Wall WA (2013) Improved robustness and consistency of 3D contact algorithms based on a dual mortar approach. Comput Methods Appl Mech Eng 264:67–80MathSciNet CrossRef MATH
    42.Press W, Teukolsky S, Vetterline W, Flannery BP (2007) Numerical recipes 3rd edition: the art of scientific computing. Cambridge University Press, CambridgeMATH
    43.Puso MA (2004) A 3D mortar method for solid mechanics. Int J Numer Methods Eng 59(3):315–336CrossRef MATH
    44.Puso MA, Laursen TA (2004) A mortar segment-to-segment frictional contact method for large deformations. Comput Methods Appl Mech Eng 193(45):4891–4913MathSciNet CrossRef MATH
    45.Sicklinger S (2014) Stabilized co-simulation of coupled problems including fields and signals. Ph.D. thesis, Technische Universität München
    46.Sicklinger S, Lerch C, Wüchner R, Bletzinger KU (2015) Fully coupled co-simulation of a wind turbine emergency brake maneuver. J Wind Eng Ind Aerodyn 144:134–145CrossRef
    47.Smith MJ, Cesnik CE, Hodges DH (2000) Evaluation of some data transfer algorithms for noncontiguous meshes. J Aerosp Eng 13(2):52–58CrossRef
    48.Streiner S (2011) Beitrag zur numerischen Simulation der Aerodynamik und Aeroelastik großer Windkraftanlagen mit horizontaler Achse. Verlag Dr. Hut
    49.Takizawa K, Henicke B, Tezduyar TE, Hsu MC, Bazilevs Y (2011) Stabilized space-time computation of wind-turbine rotor aerodynamics. Comput Mech 48(3):333–344CrossRef MATH
    50.Takizawa K, Spielman T, Tezduyar TE (2011) Space-time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters. Comput Mech 48(3):345–364CrossRef MATH
    51.Tezduyar T, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces-the deforming-spatial-domain/space-time procedure: I. the concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94(3):339–351MathSciNet CrossRef MATH
    52.Tezduyar T, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces-the deforming-spatial-domain/space-time procedure: II. computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94(3):353–371MathSciNet CrossRef MATH
    53.Tezduyar T, Osawa Y (2001) Fluid-structure interactions of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Eng 191(6):717–726CrossRef MATH
    54.Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Academic Press, San DiegoMATH
    55.Tezduyar TE, Sathe S (2004) Enhanced-discretization space-time technique (EDSTT). Comput Methods Appl Mech Eng 193(15):1385–1401MathSciNet CrossRef MATH
    56.Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space-time finite element techniques for computation of fluid-structure interactions. Comput Methods Appl Mech Eng 195(17):2002–2027MathSciNet CrossRef MATH
    57.Tezduyar TE, Sathe S, Schwaab M, Pausewang J, Christopher J, Crabtree J (2008) Fluid-structure interaction modeling of ringsail parachutes. Comput Mech 43(1):133–142CrossRef MATH
    58.Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully discretized equations in computation of fluid-structure interactions with the space-time formulations. Comput Methods Appl Mech Eng 195(41):5743–5753MathSciNet CrossRef MATH
    59.Unger R, Haupt MC, Horst P (2007) Application of lagrange multipliers for coupled problems in fluid and structural interactions. Comput Struct 85(11):796–809MathSciNet CrossRef
    60.Varello A, Demasi L, Carrera E, Giunta G (2010) An improved beam formulation for aeroelastic applications. In: Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, pp 12–15
    61.Wohlmuth BI (2000) A mortar finite element method using dual spaces for the lagrange multiplier. SIAM J Numer Anal 38(3):989–1012MathSciNet CrossRef MATH
    62.Wüchner R, Kupzok A, Bletzinger KU (2007) A framework for stabilized partitioned analysis of thin membrane-wind interaction. Int J Numer Methods Fluids 54(6–8):945–963MathSciNet CrossRef MATH
    63.Wunderlich W, Kiener G (2004) Statik der Stabtragwerke. Vieweg+Teubner Verlag, BerlinCrossRef
  • 作者单位:Tianyang Wang (1)
    Roland Wüchner (1)
    Stefan Sicklinger (1)
    Kai-Uwe Bletzinger (1)

    1. Chair of Structural Analysis, Technische Universität München, Arcisstr. 21, 80333, München, Germany
  • 刊物类别:Engineering
  • 刊物主题:Theoretical and Applied Mechanics
    Numerical and Computational Methods in Engineering
    Computational Science and Engineering
    Mechanics, Fluids and Thermodynamics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0924
文摘
This paper investigates data mapping between non-matching meshes and geometries in fluid-structure interaction. Mapping algorithms for surface meshes including nearest element interpolation, the standard mortar method and the dual mortar method are studied and comparatively assessed. The inconsistency problem of mortar methods at curved edges of fluid-structure-interfaces is solved by a newly developed enforcing consistency approach, which is robust enough to handle even the case that fluid boundary facets are totally not in contact with structure boundary elements due to high fluid refinement. Besides, tests with representative geometries show that the mortar methods are suitable for conservative mapping but it is better to use the nearest element interpolation in a direct way, and moreover, the dual mortar method can give slight oscillations. This work also develops a co-rotating mapping algorithm for 1D beam elements. Its novelty lies in the ability of handling large displacements and rotations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700