用户名: 密码: 验证码:
Elevated CO2 concentration increase the mobility of Cd and Zn in the rhizosphere of hyperaccumulator Sedum alfredii
详细信息    查看全文
  • 作者:Tingqiang Li (1)
    Qi Tao (1)
    Chengfeng Liang (1)
    Xiaoe Yang (1)
  • 关键词:Complexation ; Dissolved organic matter ; Elevated CO2 ; Hyperaccumulator ; Heavy metal ; Speciation
  • 刊名:Environmental Science and Pollution Research
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:21
  • 期:9
  • 页码:5899-5908
  • 全文大小:
  • 参考文献:1. Antoniadis V, Alloway BJ (2002) The role of dissolved organic carbon in the mobility of Cd, Ni and Zn in sewage sludge-amended soils. Environ Pollut 117:515-21 CrossRef
    2. Baken S, Degryse F, Verheyen L, Merckx R, Smolders E (2011) Metal complexation properties of freshwater dissolved organic matter are explained by its aromaticity and by anthropogenic ligands. Environ Sci Technol 45:2584-590 CrossRef
    3. Cerling TE, Harris JM, MacFadden BJ, Leakey MG, Quade J, Eisenmann V, Ehleringer JR (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389:153-58 CrossRef
    4. Christensen JB, Christensen TH (2000) The effect of pH on the complexation of Cd, Ni and Zn by dissolved organic carbon from leachate-polluted groundwater. Water Res 34:3743-754 CrossRef
    5. Cornu JY, Parat C, Schneider A, Authier L, Dauthieu M, Sappin-Didier V, Denaix L (2009) Cadmium speciation assessed by voltammetry, ion exchange and geochemical calculation in soil solutions collected after soil rewetting. Chemosphere 76:502-08 CrossRef
    6. Cornu JY, Schneider A, Jezequel K, Denaix L (2011) Modelling the complexation of Cd in soil solution at different temperatures using the UV-absorbance of dissolved organic matter. Geoderma 162:65-0 CrossRef
    7. Cousins AB, Adam NR, Wall GW, Kimball BA, Pinter PJ, Ottman MJ, Leavitt SW, Webber AN (2003) Development of C-4 photosynthesis in sorghum leaves grown under free-air CO2 enrichment (FACE). J Exp Bot 54:1969-975 CrossRef
    8. de Graaff MA, Six J, van Kessel C (2007) Elevated CO2 increases nitrogen rhizodeposition and microbial immobilization of root-derived nitrogen. New Phytol 173:778-86 CrossRef
    9. Dijkstra P, Hymus G, Colavito D, Vieglais DA, Cundari CM, Johnson DP, Hungate BA, Hinkle CR, Drake BG (2002) Elevate atmospheric CO2 stimulates aboveground biomass in a fire-regenerated scrub–oak system. Glob Chang Biol 8:90-03 CrossRef
    10. Fitz WJ, Wenzel WW, Zhang H, Nurmi J, Stipek K, Fischerova Z, Schweiger P, Kollensperger G, Ma LQ, Stingeder G (2003) Rhizosphere characteristics of the arsenic hyperaccumulator / Pteris vittata L. and monitoring of phytoremoval efficiency. Environ Sci Technol 37:5008-014 CrossRef
    11. Guo HY, Zhu JG, Zhou H, Sun YT, Yin Y, Pei DP, Ji R, Wu JC, Wang XR (2011) Elevated CO2 levels affects the concentrations of copper and cadmium in crops grown in soil contaminated with heavy metals under fully open-air field conditions. Environ Sci Technol 45:6997-003 CrossRef
    12. Gustafsson JP (2011) Visual MINTEQ ver 3.0. lish/OurSoftware/vminteq/" class="a-plus-plus">http://www2.lwr.kth.se/English/OurSoftware/vminteq/
    13. Hungate BA, Dijkstra P, Johnson DW, Hinkle CR, Drake BG (1999) Elevated CO2 increases nitrogen fixation and decreases soil nitrogen mineralization in Florida scrub oak. Glob Chang Biol 5:781-89 CrossRef
    14. IPCC, Solomon S et al (2007) Climate Change 2007, The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge, UK, 2007
    15. Jia Y, Tang SR, Wang RG, Ju XH, Ding YZ, Tu SX, Smith DL (2010) Effects of elevated CO2 on growth, photosynthesis, elemental composition, antioxidant level, and phytochelatin concentration in / Lolium mutiforum and / Lolium perenne under Cd stress. J Hazard Mater 180:384-94 CrossRef
    16. Jones DL, Willett VB (2006) Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol Biochem 38:991-99 CrossRef
    17. Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197-07 CrossRef
    18. Kim S, Kang H (2011) Effects of elevated CO2 and Pb on phytoextraction and enzyme activity. Water Air Soil Pollut 219:365-75 CrossRef
    19. Kim S, Lim H, Lee I (2010) Enhanced heavy metal phytoextraction by / Echinochloa crus- / galli using root exudates. J Biosci Bioeng 109:47-0 CrossRef
    20. Kimball BA, Pinter PJ, Garcia RL, LaMorte RL, Wall GW, Hunsaker DJ, Wechsung G, Wechsung F, Kartschall T (1995) Productivity and water use of wheat under free-air CO2 enrichment. Global Chang Biol 1:429-42 CrossRef
    21. K?rner C (2001) Biosphere responses to CO2 enrichment. Ecol Appl 10:1590-619 CrossRef
    22. Kramer U (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotechnol 16:133-41 CrossRef
    23. Krishnamurti GS, Megharaj M, Naidu R (2004) Bioavailability of cadmium–organic complexes to soil alga—an exception to the free ion model. J Agric Food Chem 52:3894-899 CrossRef
    24. Li ZB, Shuman LM (1997) Mobility of Zn, Cd and Pb in soils as affected by poultry litter extract. 1. Leaching in soil columns. Environ Pollut 95:219-26
    25. Li ZY, Tang SR, Deng XF, Wang RG, Song ZG (2010) Contrasting effects of elevated CO2 on Cu and Cd uptake by different rice varieties grown on contaminated soils with two levels of metals: implication for phytoextraction and food safety. J Hazard Mater 177:352-61 CrossRef
    26. Li TQ, Di ZZ, Han X, Yang XE (2012a) Elevated CO2 improves root growth and cadmium accumulation in the hyperaccumulator / Sedum alfredii. Plant Soil 354:325-34 CrossRef
    27. Li TQ, Xu ZH, Han X, Yang XE, Sparks DL (2012b) Characterization of dissolved organic matter in the rhizosphere of hyperaccumulator / Sedum alfredii and its effect on the mobility of zinc. Chemosphere 88:570-76 CrossRef
    28. Li TQ, Tao Q, Han X, Yang XE (2013a) Effects of elevated CO2 on rhizosphere characteristics of Cd/Zn hyperaccumulator / Sedum alfredii. Sci Total Environ 454-55:510-16 CrossRef
    29. Li TQ, Liang CF, Tao Q, Yang XE (2013b) Mobilization of cadmium by dissolved organic matter in the rhizosphere of hyperaccumulator / Sedum alfredii. Chemosphere 91:70-76 CrossRef
    30. Lieffering M, Kim HY, Kobayashi K, Okada M (2004) The impact of elevated CO2 on the elemental concentrations of field-grown rice grains. Field Crop Res 88:279-86 CrossRef
    31. Lorenz SE, Hamon RE, Holm PE, Domingues HC, Sequeira EM, Christensen TH, McGrath SP (1997) Cadmium and zinc in plants and soil solutions from contaminated soils. Plant Soil 189:21-1 CrossRef
    32. Luttge U (2004) Ecophysiology of crassulacean acid metabolism (CAM). Ann Bot Lond 93:629-52 CrossRef
    33. McGrath SP, Shen ZG, Zhao FJ (1997) Heavy metal uptake and chemical changes in the rhizosphere of / Thlaspi caerulescens and / Thlaspi ochroleucum grown in contaminated soils. Plant Soil 188:153-59 CrossRef
    34. Milne CJ, Kinniburgh DG, van Riemsdijk WH, Tipping E (2003) Generic NICA-Donnan model parameters for metal-ion binding by humic substances. Environ Sci Technol 37:958-71 CrossRef
    35. Mishra S, Heckathorn SA, Frantz JM (2012) Elevated CO2 affects plant responses to variation in boron availability. Plant Soil 350:117-30 CrossRef
    36. Nolan AL, McLaughlin MJ, Mason SD (2003) Chemical speciation of Zn, Cd, Cu, and Pb in pore waters of agricultural and contaminated soils using Donnan dialysis. Environ Sci Technol 37:90-8 CrossRef
    37. Noyes PD, McElwee MK, Miller HD, Clark BW, Van Tiem LA, Walcott KC, Erwin KN, Levin ED (2009) The toxicology of climate change: Environmental contaminants in a warming world. Environ Int 35:971-86 CrossRef
    38. Peris M, Mico C, Recatala L, Sanchez R, Sanchez J (2007) Heavy metal contents in horticultural crops of a representative area of the European Mediterranean region. Sci Total Environ 378:42-8 CrossRef
    39. Phillips RP, Bernhardt ES, Schlesinger WH (2009) Elevated CO2 increases root exudation from loblolly pine ( / Pinus taeda) seedlings as an N-mediated response. Tree Physiol 29:1513-523 CrossRef
    40. Rajkumar M, Prasad MNV, Swaminathan S, Freitas H (2013) Climate change driven plant–metal–microbe interactions. Environ Int 53:74-6 CrossRef
    41. Rodriguez JH, Klumpp A, Fangmeier A, Pignata ML (2011) Effects of elevated CO2 concentrations and fly ash amended soils on trace element accumulation and translocation among roots, stems and seeds of / Glycine max (L.) Merr. J Hazard Mater 187:58-6 CrossRef
    42. Sauve S, Norvell WA, McBride M, Hendershot W (2000) Speciation and complexation of cadmium in extracted soil solutions. Environ Sci Technol 34:291-96 CrossRef
    43. Schmitt D, Saravia F, Frimmel FH, Schuessler W (2003) NOM-facilitated transport of metal ions in aquifers: importance of complex-dissociation kinetics and colloid formation. Water Res 37:3541-550 CrossRef
    44. Tang S, Xi L, Zheng J, Li H (2003) Response to elevated CO2 of Indian mustard and sunflower growing on copper contaminated soil. Bull Environ Contam Toxicol 71:988-97 CrossRef
    45. Terzano R, Spagnuolo M, Vekemans B, De Nolf W, Janssens K, Falkenberg G, Fiore S, Ruggiero P (2007) Assessing the origin and fate of Cr, Ni, Cu, Zn, Pb, and V in industrial polluted soil by combined microspectroscopic techniques and bulk extraction methods. Environ Sci Technol 41:6762-769 CrossRef
    46. Tu SX, Ma L, Luongo T (2004) Root exudates and arsenic accumulation in arsenic hyperaccumulating / Pteris vittata and non-hyperaccumulating / Nephrolepis exaltata. Plant Soil 258:9-9 CrossRef
    47. Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765-94 CrossRef
    48. Weng LP, Temminghoff EJM, Lofts S, Tipping E, Van Riemsdijk WH (2002) Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Environ Sci Technol 36:4804-810 CrossRef
    49. Wu HB, Tang SR, Zhang XM, Guo JK, Song ZG, Tian SA, Smith DL (2009) Using elevated CO2 to increase the biomass of a / Sorghum vulgare?×-em class="a-plus-plus">Sorghum vulgare var. / sudanense hybrid and / Trifolium pratense L. and to trigger hyperaccumulation of cesium. J Hazard Mater 170:861-70 CrossRef
    50. Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species ( / Sedum alfredii Hance). Plant Soil 259:181-89 CrossRef
    51. Zheng JM, Wang HY, Li ZQ, Tang SR, Chen ZY (2008) Using elevated carbon dioxide to enhance copper accumulation in / Pteridium revolutum, a copper-tolerant plant, under experimental conditions. Int J Phytoremediation 10:161-72 CrossRef
  • 作者单位:Tingqiang Li (1)
    Qi Tao (1)
    Chengfeng Liang (1)
    Xiaoe Yang (1)

    1. Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
  • ISSN:1614-7499
文摘
The effects of elevated CO2 on metal species and mobility in the rhizosphere of hyperaccumulator are not well understood. We report an experiment designed to compare the effects of elevated CO2 on Cd/Zn speciation and mobility in the rhizosphere of hyperaccumulating ecotype (HE) and a non-hyperaccumulating ecotype (NHE) of Sedum alfredii grown under ambient (350?μl?l?) or elevated (800?μl?l?) CO2 conditions. No difference in solution pH of NHE was observed between ambient and elevated CO2 treatments. For HE, however, elevated CO2 reduced soil solution pH by 0.22 unit, as compared to ambient CO2 conditions. Elevated CO2 increased dissolved organic carbon (DOC) and organic acid levels in soil solution of both ecotypes, but the increase in HE solution was much greater than in NHE solution. After the growth of HE, the concentrations of Cd and Zn in soil solution decreased significantly regardless of CO2 level. The visual MINTEQ speciation model predicted that Cd/Zn–DOM complexes were the dominant species in soil solutions, followed by free Cd2+ and Zn2+ species for both ecotypes. However, Cd/Zn–DOM complexes fraction in soil solution of HE was increased by the elevated CO2 treatment (by 8.01?% for Cd and 8.47?% for Zn, respectively). Resin equilibration experiment results indicated that DOM derived from the rhizosphere of HE under elevated CO2 (HE-DOM-E) (90?% for Cd and 73?% for Zn, respectively) showed greater ability to form complexes with Cd and Zn than those under ambient CO2 (HE-DOM-A) (82?% for Cd and 61?% for Zn, respectively) in the undiluted sample. HE-DOM-E showed greater ability to extract Cd and Zn from soil than HE-DOM-A. It was concluded that elevated CO2 could increase the mobility of Cd and Zn due to the enhanced formation of DOM–metal complexes in the rhizosphere of HE S. alfredii.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700