用户名: 密码: 验证码:
Elevated CO2 improves root growth and cadmium accumulation in the hyperaccumulator Sedum alfredii
详细信息    查看全文
  • 作者:Tingqiang Li (1) litq@zju.edu.cn
    Zhenzhen Di (1)
    Xuan Han (1)
    Xiaoe Yang (1)
  • 关键词:Cd uptake – ; Elevated CO2 – ; Phytoextraction – ; Root morphology – ; S. alfredii
  • 刊名:Plant and Soil
  • 出版年:2012
  • 出版时间:May 2012
  • 年:2012
  • 卷:354
  • 期:1-2
  • 页码:325-334
  • 全文大小:319.4 KB
  • 参考文献:1. Banuelos G, Leduc DL, Pilon-Smits EAH, Terry N (2007) Transgenic Indian mustard overexpressing selenocysteine lyase or selenocysteine methyltransferase exhibit enhanced potential for selenium phytoremediation under field conditions. Environ Sci Technol 41:599–605
    2. Barcelo J, Poschenrieder C (2011) Hyperaccumulation of trace elements: from uptake and tolerance mechanisms to litter decomposition; selenium as an example. Plant Soil 341:31–35
    3. Bassirirad H, Griffin KL, Strain BR, Reynolds JF (1996) Effects of CO2 enrichment on growth and root (NH4+)-N-15 uptake rate of loblolly pine and ponderosa pine seedlings. Tree Physiol 16:957–962
    4. Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotech 8:279–284
    5. Cousins AB, Adam NR, Wall GW, Kimball BA, Pinter PJ, Ottman MJ, Leavitt SW, Webber AN (2003) Development of C-4 photosynthesis in sorghum leaves grown under free-air CO2 enrichment (FACE). J Exp Bot 54:1969–1975
    6. Cui M, Miller PM, Nobel PS (1993) CO2 exchange and growth of the crassulacean acid metabolism plant Opuntia-Ficus-indica under elevated CO2 in open-top chambers. Plant Physiol 103:519–524
    7. Deepak SS, Agrawal M (1999) Growth and yield responses of wheat plants to elevated levels of CO2 and S2, singly and in combination. Environ Pollut 104:411–419
    8. Drennan PM, Nobel PS (2000) Responses of CAM species to increasing atmospheric CO2 concentrations. Plant Cell Environ 23:767–781
    9. Ebersberger D, Niklaus PA, Kandeler E (2003) Long term CO2 enrichment stimulates N-mineralisation and enzyme activities in calcareous grassland. Soil Biol Biochem 35:965–972
    10. Gouk SS, Yong JWH, Hew CS (1997) Effects of super-elevated CO2 on the growth and carboxylating enzymes in an epiphytic CAM orchid plantlet. J Plant Physiol 151:129–136
    11. Hogy P, Wieser H, Kohler P, Schwadorf K, Breuer J, Franzaring J, Muntifering R, Fangmeier A (2009) Effects of elevated CO2 on grain yield and quality of wheat: results from a 3-year free-air CO2 enrichment experiment. Plant Biol 11:60–69
    12. Hungate BA, Holland EA, Jackson RB, Chapin FS, Mooney HA, Field CB (1997) The fate of carbon in grasslands under carbon dioxide enrichment. Nature 388:576–579
    13. IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and NY, USA, pp. 1–21
    14. Jia Y, Tang SR, Wang RG, Ju XH, Ding YZ, Tu SX, Smith DL (2010) Effects of elevated CO2 on growth, photosynthesis, elemental composition, antioxidant level, and phytochelatin concentration in Lolium mutiforum and Lolium perenne under Cd stress. J Hazard Mater 180:384–394
    15. Jin CW, Du ST, Chen WW, Li GX, Zhang YS, Zheng SJ (2009) Elevated carbon dioxide improves plant iron nutrition through enhancing the iron-deficiency-induced responses under iron-limited conditions in tomato. Plant Physiol 150:272–280
    16. Kimball BA, Pinter PJ, Garcia RL, LaMorte RL, Wall GW, Hunsaker DJ, Wechsung G, Wechsung F, Kartschall T (1995) Productivity and water use of wheat under free-air CO2 enrichment. Global Change Biol 1:429–442
    17. Kimball BA, Kobayashi K, Bindi M (2002) Responses of agricultural crops to free-air CO2 enrichment. Adv Agron 77:293–368
    18. Kr盲mer U (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotech 16:133–141
    19. Kumar PBAN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction—the use of plants to remove heavy-metals from soils. Environ Sci Technol 29:1232–1238
    20. Li ZY, Tang SR, Deng XF, Wang RG, Song ZG (2010) Contrasting effects of elevated CO2 on Cu and Cd uptake by different rice varieties grown on contaminated soils with two levels of metals: implication for phytoextraction and food safety. J Hazard Mater 177:352–361
    21. Liu D, Islam E, Ma JS, Wang X, Mahmood Q, Jin XF, Li TQ, Yang XE, Gupta D (2008) Optimization of chelator-assisted phytoextraction, using EDTA, lead and Sedum alfredii Hance as a model system. Bull Environ Contam Toxicol 81:30–35
    22. Lu RK (1999) Analytical methods for soils and agricultural chemistry. China Agricultural Science and Technology Press, Beijing
    23. Luttge U (2004) Ecophysiology of Crassulacean Acid Metabolism (CAM). Ann Bot-London 93:629–652
    24. Marinari S, Calfapietra C, De Angelis P, Mugnozza GS, Grego S (2007) Impact of elevated CO2 and nitrogen fertilization on foliar elemental composition in a short rotation poplar plantation. Environ Pollut 147:507–515
    25. McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotech 14:277–282
    26. Murphy AS, Peer W, Schulz B (eds) (2011) The plant plasma membrane. Springer Heidelberg Dordrecht London New York, Heidelberg. pp 303–330
    27. Pence NS, Larsen PB, Ebbs SD, Letham DLD, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci USA 97:4956–4960
    28. Pritchard SG, Rogers HH (2000) Spatial and temporal deployment of crop roots in CO2-enriched environments. New Phytol 147:55–71
    29. Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181
    30. Robinson BH, Banuelos G, Conesa HM, Evangelou MWH, Schulin R (2009) The Phytomanagement of trace elements in soil. Crit Rev Plant Sci 28:240–266
    31. Rogers HH, Prior SA, Runion GB, Mitchell RJ (1996) Root to shoot ratio of crops as influenced by CO2. Plant Soil 187:229–248
    32. Sun YB, Zhou QX, An J, Liu WT, Liu R (2009) Chelator-enhanced phytoextraction of heavy metals from contaminated soil irrigated by industrial wastewater with the hyperaccumulator plant (Sedum alfredii Hance). Geoderma 150:106–112
    33. Tang S, Xi L, Zheng JM, Li H (2003) Response to elevated CO2 of Indian mustard and sunflower growing on copper contaminated soil. Bull Environ Contam Toxico 71:988–997
    34. Tang SR, Jia Y, Wang RG, Ju XH, Ding YZ, Tu SX, Smith DL (2010) Effects of elevated CO2 on growth, photosynthesis, elemental composition, antioxidant level, and phytochelatin concentration in Lolium mutiforum and Lolium perenne under Cd stress. J Hazard Mater 180:384–394
    35. Wenzel WW, Unterbrunner R, Sommer P, Sacco P (2003) Chelate-assisted phytoextraction using canola (Brassica napus L.) in outdoors pot and lysimeter experiments. Plant Soil 249:83–96
    36. Wu LH, Luo YM, Xing XR, Christie P (2004) EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agr Ecosyst Environ 102:307–318
    37. Wu HB, Tang SR, Zhang XM, Guo JK, Song ZG, Tian SA, Smith DL (2009) Using elevated CO2 to increase the biomass of a Sorghum vulgare x Sorghum vulgare var. sudanense hybrid and Trifolium pratense L. and to trigger hyperaccumulation of cesium. J Hazard Mater 170:861–870
    38. Yang XE, Long XX, Ni WZ, Fu CX (2002) Sedum alfredii H: a new Zn hyperaccumulating plant first found in China. Chin Sci Bull 47:1634–1637
    39. Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189
    40. Yang XE, Li TQ, Yang JC, He ZL, Lu LL, Meng FH (2006) Zinc compartmentation in root, transport into xylem, and absorption into leaf cells in the hyperaccumulating species of Sedum alfredii Hance. Planta 224:185–195
    41. Zhao FJ, McGrath SP (2009) Biofortification and phytoremediation. Curr Opin Plant Biol 12:373–380
    42. Zheng JM, Wang HY, Li ZQ, Tang SR, Chen ZY (2008) Using elevated carbon dioxide to enhance copper accumulation in Pteridium revolutum, a copper-tolerant plant, under experimental conditions. Int J Phytorem 10:161–172
  • 作者单位:1. Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310029 China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Soil Science and Conservation
    Plant Physiology
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-5036
文摘
Aims This study examined the effect of elevated CO2 on plant growth, root morphology and Cd accumulation in S. alfredii, and assessed the possibility of using elevated CO2 as fertilizer to enhance phytoremediation efficiency of Cd-contaminated soil by S. alfredii.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700