用户名: 密码: 验证码:
Experimental Investigation on the Permeability Evolution of Compacted Broken Coal
详细信息    查看全文
  • 作者:Tingxiang Chu ; Minggao Yu ; Deyi Jiang
  • 关键词:Broken coal ; Gob ; Particle size ; Non ; Darcy flow ; Compaction ; Seepage
  • 刊名:Transport in Porous Media
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:116
  • 期:2
  • 页码:847-868
  • 全文大小:
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Geotechnical Engineering & Applied Earth Sciences; Industrial Chemistry/Chemical Engineering; Hydrology/Water Resources; Civil Engineering; Hydrogeology; Classical and Continuum Physics;
  • 出版者:Springer Netherlands
  • ISSN:1573-1634
  • 卷排序:116
文摘
Given the importance of airflow seepage properties to coal self-oxidation in gob, this paper develops a method and self-designed apparatus to assess seepage properties of compacted broken coal. This study mainly focuses on the strain, porosity and permeability evolution under the different conditions of particle size, vertical stress and temperature. The studied results show: (1) The strain, porosity and permeability were enlarged when the particle size increased under the same loading stress. The porosity and permeability reduced when the vertical stress increased. (2) The non-Darcy coefficient was negative in all tests, but the absolute value of the non-Darcy coefficient generally increased when the vertical stress increased. (3) The experiment results indicated that the larger the particle was, the easier to be compacted. The larger the grain diameter was, the lower the porosity and permeability were, which shown that the void volume in broken coal with larger grain diameters could be easily compacted. (4) The permeability was reduced when the temperature increased, which indicated the permeability of the compacted broken coal decreased during low-temperature oxidation in gob. (5) By the effects of stress and the particle size diameter on the porosity and permeability, the vertical stress recovery and generally increase are advantageous to reduce the porosity and permeability in gob. It is favorable to reduce the porosity and permeability and prevent coal self-heating by reducing the degree of fragmentation and percentage of small particles or consolidate the small particles.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700