用户名: 密码: 验证码:
All about that fat: Lipid modification of proteins in Cryptococcus neoformans
详细信息    查看全文
  • 作者:Felipe H. Santiago-Tirado ; Tamara L. Doering
  • 关键词:Cryptococcus ; palmitoylation ; myristoylation ; prenylation ; isoprenylation ; GPI ; anchored proteins ; lipid modification ; protein lipidation
  • 刊名:Journal of Microbiology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:54
  • 期:3
  • 页码:212-222
  • 全文大小:784 KB
  • 参考文献:Aitken, A., Cohen, P., Santikarn, S., Williams, D.H., Calder, A.G., Smith, A., and Klee, C.B. 1982. Identification of the NH2-terminal blocking group of calcineurin B as myristic acid. FEBS Lett. 150, 314–318.CrossRef PubMed
    Blanc, M., Blaskovic, S., and van der Goot, F.G. 2013. Palmitoylation, pathogens and their host. Biochem. Soc. Trans. 41, 84–88.CrossRef PubMed
    Brown, G.D., Denning, D.W., Gow, N.A., Levitz, S.M., Netea, M.G., and White, T.C. 2012. Hidden killers: human fungal infections. Sci. Transl. Med. 4, 165rv113.CrossRef
    Caminero, A., Calvo, E., Valentin, E., Ruiz-Herrera, J., Lopez, J.A., and Sentandreu, R. 2014. Identification of Candida albicans wall mannoproteins covalently linked by disulphide and/or alkalisensitive bridges. Yeast 31, 137–144.CrossRef PubMed
    Chayakulkeeree, M., Sorrell, T.C., Siafakas, A.R., Wilson, C.F., Pantarat, N., Gerik, K.J., Boadle, R., and Djordjevic, J.T. 2008. Role and mechanism of phosphatidylinositol-specific phospholipase C in survival and virulence of Cryptococcus neoformans. Mol. Microbiol. 69, 809–826.PubMed
    Costachel, C., Coddeville, B., Latge, J.P., and Fontaine, T. 2005. Glycosylphosphatidylinositol-anchored fungal polysaccharide in Aspergillus fumigatus. J. Biol. Chem. 280, 39835–39842.CrossRef PubMed
    Das, U., Kumar, S., Dimmock, J.R., and Sharma, R.K. 2012. Inhibition of protein N-myristoylation: a therapeutic protocol in developing anticancer agents. Curr. Cancer Drug Target 12, 667–692.CrossRef
    Davidson, R.C., Moore, T.D., Odom, A.R., and Heitman, J. 2000. Characterization of the MFalpha pheromone of the human fungal pathogen Cryptococcus neoformans. Mol. Microbiol. 38, 1017–1026.CrossRef PubMed
    Djordjevic, J.T., Del Poeta, M., Sorrell, T.C., Turner, K.M., and Wright, L.C. 2005. Secretion of cryptococcal phospholipase B1 (PLB1) is regulated by a glycosylphosphatidylinositol (GPI) anchor. Biochem. J. 389, 803–812.PubMedCentral CrossRef PubMed
    Doering, T.L. 2009. How sweet it is! Cell wall biogenesis and polysaccharide capsule formation in Cryptococcus neoformans. Annu. Rev. Microbiol. 63, 223–247.PubMedCentral CrossRef PubMed
    Duronio, R.J., Reed, S.I., and Gordon, J.I. 1992. Mutations of human myristoyl-CoA:protein N-myristoyltransferase cause temperature- sensitive myristic acid auxotrophy in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 89, 4129–4133.PubMedCentral CrossRef PubMed
    Eastman, R.T., Buckner, F.S., Yokoyama, K., Gelb, M.H., and Van Voorhis, W.C. 2006. Thematic review series: lipid posttranslational modifications. Fighting parasitic disease by blocking protein farnesylation. J. Lipid Res. 47, 233–240.CrossRef PubMed
    Eichler, J. and Adams, M.W. 2005. Posttranslational protein modification in Archaea. Microbiol. Mol. Biol. Rev. 69, 393–425.PubMedCentral CrossRef PubMed
    Eigenheer, R.A., Jin Lee, Y., Blumwald, E., Phinney, B.S., and Gelli, A. 2007. Extracellular glycosylphosphatidylinositol-anchored mannoproteins and proteases of Cryptococcus neoformans. FEMS Yeast Res. 7, 499–510.CrossRef PubMed
    Fang, W., Robinson, D.A., Raimi, O.G., Blair, D.E., Harrison, J.R., Lockhart, D.E., Torrie, L.S., Ruda, G.F., Wyatt, P.G., Gilbert, I.H., et al. 2015. N-myristoyltransferase is a cell wall target in Aspergillus fumigatus. ACS Chem. Biol. 10, 1425–1434.PubMedCentral CrossRef PubMed
    Ferguson, M.A., Low, M.G., and Cross, G.A. 1985. Glycosyl-sn-1,2- dimyristylphosphatidylinositol is covalently linked to Trypanosoma brucei variant surface glycoprotein. J. Biol. Chem. 260, 14547–14555.
    Folch, J. and Lees, M. 1951. Proteolipides, a new type of tissue lipoproteins; their isolation from brain. J. Biol. Chem. 191, 807–817.PubMed
    Fontaine, T., Magnin, T., Melhert, A., Lamont, D., Latge, J.P., and Ferguson, M.A. 2003. Structures of the glycosylphosphatidylinositol membrane anchors from Aspergillus fumigatus membrane proteins. Glycobiology 13, 169–177.CrossRef PubMed
    Fortwendel, J.R., Juvvadi, P.R., Rogg, L.E., Asfaw, Y.G., Burns, K.A., Randell, S.H., and Steinbach, W.J. 2012. Plasma membrane localization is required for RasA-mediated polarized morphogenesis and virulence of Aspergillus fumigatus. Eukaryot. Cell 11, 966–977.PubMedCentral CrossRef PubMed
    Franzot, S.P. and Doering, T.L. 1999. Inositol acylation of glycosylphosphatidylinositols in the pathogenic fungus Cryptococcus neoformans and the model yeast Saccharomyces cerevisiae. Biochem. J. 340(Pt 1), 25–32.PubMedCentral PubMed
    Frenal, K., Tay, C.L., Mueller, C., Bushell, E.S., Jia, Y., Graindorge, A., Billker, O., Rayner, J.C., and Soldati-Favre, D. 2013. Global analysis of apicomplexan protein S-acyl transferases reveals an enzyme essential for invasion. Traffic 14, 895–911.PubMedCentral CrossRef PubMed
    Frieman, M.B. and Cormack, B.P. 2004. Multiple sequence signals determine the distribution of glycosylphosphatidylinositol proteins between the plasma membrane and cell wall in Saccharomyces cerevisiae. Microbiology 150, 3105–3114.CrossRef PubMed
    Georgopapadakou, N.H. 2002. Antifungals targeted to protein modification: focus on protein N-myristoyltransferase. Expert. Opin. Investig. Drugs 11, 1117–1125.CrossRef PubMed
    Gilbert, N.M., Baker, L.G., Specht, C.A., and Lodge, J.K. 2012. A glycosylphosphatidylinositol anchor is required for membrane localization but dispensable for cell wall association of chitin deacetylase 2 in Cryptococcus neoformans. mBio 3, e00007–12.PubMedCentral CrossRef PubMed
    Gillingham, A.K. and Munro, S. 2007. The small G proteins of the Arf family and their regulators. Annu. Rev. Cell. Dev. Biol. 23, 579–611.CrossRef PubMed
    Goldston, A.M., Sharma, A.I., Paul, K.S., and Engman, D.M. 2014. Acylation in trypanosomatids: an essential process and potential drug target. Trends Parasitol. 30, 350–360.PubMedCentral CrossRef PubMed
    Gutkowska, M. and Swiezewska, E. 2012. Structure, regulation and cellular functions of Rab geranylgeranyl transferase and its cellular partner Rab Escort Protein. Mol. Membr. Biol. 29, 243–256.CrossRef PubMed
    Hast, M.A., Nichols, C.B., Armstrong, S.M., Kelly, S.M., Hellinga, H.W., Alspaugh, J.A., and Beese, L.S. 2011. Structures of Cryptococcus neoformans protein farnesyltransferase reveal strategies for developing inhibitors that target fungal pathogens. J. Biol. Chem. 286, 35149–35162.PubMedCentral CrossRef PubMed
    Hicks, S.W. and Galan, J.E. 2013. Exploitation of eukaryotic subcellular targeting mechanisms by bacterial effectors. Nat. Rev. Microbiol. 11, 316–326.CrossRef PubMed
    Honscher, C. and Ungermann, C. 2014. A close-up view of membrane contact sites between the endoplasmic reticulum and the endolysosomal system: from yeast to man. Crit. Rev. Biochem. Mol. Biol. 49, 262–268.CrossRef PubMed
    Howie, J., Reilly, L., Fraser, N.J., Vlachaki Walker, J.M., Wypijewski, K.J., Ashford, M.L., Calaghan, S.C., McClafferty, H., Tian, L., Shipston, M.J., et al. 2014. Substrate recognition by the cell surface palmitoyl transferase DHHC5. Proc. Natl. Acad. Sci. USA 111, 17534–17539.PubMedCentral CrossRef PubMed
    Ivanov, S.S. and Roy, C. 2013. Host lipidation: a mechanism for spatial regulation of Legionella effectors. Curr. Top. Microbiol. Immunol. 376, 135–154.PubMed
    Janbon, G., Ormerod, K.L., Paulet, D., Byrnes, E.J., 3rd, Yadav, V., Chatterjee, G., Mullapudi, N., Hon, C.C., Billmyre, R.B., Brunel, F., et al. 2014. Analysis of the genome and transcriptome of Cryptococcus neoformans var. grubii reveals complex RNA expression and microevolution leading to virulence attenuation. PLoS Genet. 10, e1004261.PubMedCentral CrossRef PubMed
    Jones, M.L., Collins, M.O., Goulding, D., Choudhary, J.S., and Rayner, J.C. 2012. Analysis of protein palmitoylation reveals a pervasive role in Plasmodium development and pathogenesis. Cell Host Microbe 12, 246–258.PubMedCentral CrossRef PubMed
    Kamiya, Y., Sakurai, A., Tamura, S., and Takahashi, N. 1978. Structure of rhodotorucine A, a novel lipopeptide, inducing mating tube formation in Rhodosporidium toruloides. Biochem. Biophys. Res. Commun. 83, 1077–1083.CrossRef PubMed
    Kempf, M., Cottin, J., Licznar, P., Lefrancois, C., Robert, R., and Apaire-Marchais, V. 2009. Disruption of the GPI protein-encoding gene IFF4 of Candida albicans results in decreased adherence and virulence. Mycopathologia 168, 73–77.CrossRef PubMed
    Lam, K.K., Davey, M., Sun, B., Roth, A.F., Davis, N.G., and Conibear, E. 2006. Palmitoylation by the DHHC protein Pfa4 regulates the ER exit of Chs3. J. Cell. Biol. 174, 19–25.PubMedCentral CrossRef PubMed
    Langner, C.A., Lodge, J.K., Travis, S.J., Caldwell, J.E., Lu, T., Li, Q., Bryant, M.L., Devadas, B., Gokel, G.W., Kobayashi, G.S., and et al. 1992. 4-oxatetradecanoic acid is fungicidal for Cryptococcus neoformans and inhibits replication of human immunodeficiency virus I. J. Biol. Chem. 267, 17159–17169.PubMed
    Lin, X., Hull, C.M., and Heitman, J. 2005. Sexual reproduction between partners of the same mating type in Cryptococcus neoformans. Nature 434, 1017–1021.CrossRef PubMed
    Lin, X., Jackson, J.C., Feretzaki, M., Xue, C., and Heitman, J. 2010. Transcription factors Mat2 and Znf2 operate cellular circuits orchestrating opposite- and same-sex mating in Cryptococcus neoformans. PLoS Genet. 6, e1000953.PubMedCentral CrossRef PubMed
    Lobo, S., Greentree, W.K., Linder, M.E., and Deschenes, R.J. 2002. Identification of a Ras palmitoyltransferase in Saccharomyces cerevisiae. J. Biol. Chem. 277, 41268–41273.CrossRef PubMed
    Lodge, J.K., Jackson-Machelski, E., Higgins, M., McWherter, C.A., Sikorski, J.A., Devadas, B., and Gordon, J.I. 1998. Genetic and biochemical studies establish that the fungicidal effect of a fully depeptidized inhibitor of Cryptococcus neoformans myristoyl- CoA:protein N-myristoyltransferase (Nmt) is Nmt-dependent. J. Biol. Chem. 273, 12482–12491.CrossRef PubMed
    Lodge, J.K., Jackson-Machelski, E., Toffaletti, D.L., Perfect, J.R., and Gordon, J.I. 1994a. Targeted gene replacement demonstrates that myristoyl-CoA: protein N-myristoyltransferase is essential for viability of Cryptococcus neoformans. Proc. Natl. Acad. Sci. USA 91, 12008–12012.PubMedCentral CrossRef PubMed
    Lodge, J.K., Johnson, R.L., Weinberg, R.A., and Gordon, J.I. 1994b. Comparison of myristoyl-CoA:protein N-myristoyltransferases from three pathogenic fungi: Cryptococcus neoformans, Histoplasma capsulatum, and Candida albicans. J. Biol. Chem. 269, 2996–3009.PubMed
    Loftus, B.J., Fung, E., Roncaglia, P., Rowley, D., Amedeo, P., Bruno, D., Vamathevan, J., Miranda, M., Anderson, I.J., Fraser, J.A., et al. 2005. The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science 307, 1321–1324.PubMedCentral CrossRef PubMed
    McClelland, C.M., Fu, J., Woodlee, G.L., Seymour, T.S., and Wickes, B.L. 2002. Isolation and characterization of the Cryptococcus neoformans MATa pheromone gene. Genetics 160, 935–947.PubMedCentral PubMed
    McLellan, C.A., Whitesell, L., King, O.D., Lancaster, A.K., Mazitschek, R., and Lindquist, S. 2012. Inhibiting GPI anchor biosynthesis in fungi stresses the endoplasmic reticulum and enhances immunogenicity. ACS Chem. Biol. 7, 1520–1528.CrossRef PubMed
    Menon, A.K. 2008. Chapter 2: Lipid Modifications of Proteins, pp. xii, 631. In Vance, D.E. and Vance, J.E. (eds.), Biochemistry of lipids, lipoproteins and membranes. Elsevier, Amsterdam; Boston.
    Michaelis, S. and Barrowman, J. 2012. Biogenesis of the Saccharomyces cerevisiae pheromone a-factor, from yeast mating to human disease. Microbiol. Mol. Biol. Rev. 76, 626–651.PubMedCentral CrossRef PubMed
    Miura, G.I. and Treisman, J.E. 2006. Lipid modification of secreted signaling proteins. Cell Cycle 5, 1184–1188.PubMedCentral CrossRef PubMed
    Moissoglu, K. and Schwartz, M.A. 2014. Spatial and temporal control of Rho GTPase functions. Cell Logist. 4, e943618.PubMedCentral CrossRef PubMed
    Muñiz, M. and Zurzolo, C. 2014. Sorting of GPI-anchored proteins from yeast to mammals—common pathways at different sites? J. Cell. Sci. 127, 2793–2801.CrossRef PubMed
    Nakayama, H., Kurokawa, K., and Lee, B.L. 2012. Lipoproteins in bacteria: structures and biosynthetic pathways. FEBS J. 279, 4247–4268.CrossRef PubMed
    Nguyen, U.T., Goody, R.S., and Alexandrov, K. 2010. Understanding and exploiting protein prenyltransferases. Chembiochem 11, 1194–1201.CrossRef PubMed
    Nichols, C.B., Ferreyra, J., Ballou, E.R., and Alspaugh, J.A. 2009. Subcellular localization directs signaling specificity of the Cryptococcus neoformans Ras1 protein. Eukaryot. Cell 8, 181–189.PubMedCentral CrossRef PubMed
    Nichols, C.B., Ost, K.S., Grogan, D.P., Pianalto, K., Hasan, S., and Alspaugh, J.A. 2015. Impact of protein palmitoylation on the virulence potential of Cryptococcus neoformans. Eukaryot. Cell 14, 626–635.PubMedCentral CrossRef PubMed
    Ohno, Y., Kashio, A., Ogata, R., Ishitomi, A., Yamazaki, Y., and Kihara, A. 2012. Analysis of substrate specificity of human DHHC protein acyltransferases using a yeast expression system. Mol. Biol. Cell 23, 4543–4551.PubMedCentral CrossRef PubMed
    Ohno, Y., Kihara, A., Sano, T., and Igarashi, Y. 2006. Intracellular localization and tissue-specific distribution of human and yeast DHHC cysteine-rich domain-containing proteins. Biochim. Biophys. Acta. 1761, 474–483.CrossRef PubMed
    Orlean, P. and Menon, A.K. 2007. Thematic review series: lipid posttranslational modifications. GPI anchoring of protein in yeast and mammalian cells, or: how we learned to stop worrying and love glycophospholipids. J. Lipid Res. 48, 993–1011.CrossRef PubMed
    Panackal, A.A., Wuest, S.C., Lin, Y.C., Wu, T., Zhang, N., Kosa, P., Komori, M., Blake, A., Browne, S.K., Rosen, L.B., et al. 2015. Paradoxical immune responses in non-hiv cryptococcal meningitis. PLoS Pathog. 11, e1004884.PubMedCentral CrossRef PubMed
    Panethymitaki, C., Bowyer, P.W., Price, H.P., Leatherbarrow, R.J., Brown, K.A., and Smith, D.F. 2006. Characterization and selective inhibition of myristoyl-CoA:protein N-myristoyltransferase from Trypanosoma brucei and Leishmania major. Biochem. J. 396, 277–285.PubMedCentral CrossRef PubMed
    Park, B.J., Wannemuehler, K.A., Marston, B.J., Govender, N., Pappas, P.G., and Chiller, T.M. 2009. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 23, 525–530.CrossRef PubMed
    Piispanen, A.E., Bonnefoi, O., Carden, S., Deveau, A., Bassilana, M., and Hogan, D.A. 2011. Roles of Ras1 membrane localization during Candida albicans hyphal growth and farnesol response. Eukaryot. Cell 10, 1473–1484.PubMedCentral CrossRef PubMed
    Richard, M., Ibata-Ombetta, S., Dromer, F., Bordon-Pallier, F., Jouault, T., and Gaillardin, C. 2002. Complete glycosylphosphatidylinositol anchors are required in Candida albicans for full morphogenesis, virulence and resistance to macrophages. Mol. Microbiol. 44, 841–853.CrossRef PubMed
    Roth, A.F., Feng, Y., Chen, L., and Davis, N.G. 2002. The yeast DHHC cysteine-rich domain protein Akr1p is a palmitoyl transferase. J. Cell. Biol. 159, 23–28.PubMedCentral CrossRef PubMed
    Roth, A.F., Wan, J., Bailey, A.O., Sun, B., Kuchar, J.A., Green, W.N., Phinney, B.S., Yates, J.R.3rd, and Davis, N.G. 2006. Global analysis of protein palmitoylation in yeast. Cell 125, 1003–1013.PubMedCentral CrossRef PubMed
    Sanchez-Mir, L., Franco, A., Martin-Garcia, R., Madrid, M., Vicente- Soler, J., Soto, T., Gacto, M., Perez, P., and Cansado, J. 2014. Rho2 palmitoylation is required for plasma membrane localization and proper signaling to the fission yeast cell integrity mitogen-activated protein kinase pathway. Mol. Cell. Biol. 34, 2745–2759.PubMedCentral CrossRef PubMed
    Santiago-Tirado, F.H., Peng, T., Yang, M., Hang, H.C., and Doering, T.L. 2015. A single protein s-acyl transferase acts through diverse substrates to determine cryptococcal morphology, stress tolerance, and pathogenic outcome. PLoS Pathog. 11, e1004908.PubMedCentral CrossRef PubMed
    Schmidt, M.F., Bracha, M., and Schlesinger, M.J. 1979. Evidence for covalent attachment of fatty acids to Sindbis virus glycoproteins. Proc. Natl. Acad. Sci. USA 76, 1687–1691.PubMedCentral CrossRef PubMed
    Selvig, K., Ballou, E.R., Nichols, C.B., and Alspaugh, J.A. 2013. Restricted substrate specificity for the geranylgeranyltransferase-I enzyme in Cryptococcus neoformans: implications for virulence. Eukaryot. Cell 12, 1462–1471.PubMedCentral CrossRef PubMed
    Shen, H., Chen, S.M., Liu, W., Zhu, F., He, L.J., Zhang, J.D., Zhang, S.Q., Yan, L., Xu, Z., Xu, G.T., et al. 2015a. Abolishing cell wall glycosylphosphatidylinositol-anchored proteins in Candida albicans enhances recognition by host dectin-1. Infect. Immun. 83, 2694–2704.PubMedCentral CrossRef PubMed
    Shen, W.C., Davidson, R.C., Cox, G.M., and Heitman, J. 2002. Pheromones stimulate mating and differentiation via paracrine and autocrine signaling in Cryptococcus neoformans. Eukaryot. Cell 1, 366–377.PubMedCentral CrossRef PubMed
    Shen, M., Pan, P., Li, Y., Li, D., Yu, H., and Hou, T. 2015b. Farnesyltransferase and geranylgeranyltransferase I: structures, mechanism, inhibitors and molecular modeling. Drug Discov. Today 20, 267–276.CrossRef PubMed
    Siafakas, A.R., Sorrell, T.C., Wright, L.C., Wilson, C., Larsen, M., Boadle, R., Williamson, P.R., and Djordjevic, J.T. 2007. Cell walllinked cryptococcal phospholipase B1 is a source of secreted enzyme and a determinant of cell wall integrity. J. Biol. Chem. 282, 37508–37514.CrossRef PubMed
    Siafakas, A.R., Wright, L.C., Sorrell, T.C., and Djordjevic, J.T. 2006. Lipid rafts in Cryptococcus neoformans concentrate the virulence determinants phospholipase B1 and Cu/Zn superoxide dismutase. Eukaryot. Cell 5, 488–498.PubMedCentral CrossRef PubMed
    Srikanta, D., Santiago-Tirado, F.H., and Doering, T.L. 2014. Cryptococcus neoformans: historical curiosity to modern pathogen. Yeast 31, 47–60.PubMedCentral CrossRef PubMed
    Umemura, M., Okamoto, M., Nakayama, K., Sagane, K., Tsukahara, K., Hata, K., and Jigami, Y. 2003. GWT1 gene is required for inositol acylation of glycosylphosphatidylinositol anchors in yeast. J. Biol. Chem. 278, 23639–23647.CrossRef PubMed
    Vallim, M.A., Fernandes, L., and Alspaugh, J.A. 2004. The RAM1 gene encoding a protein-farnesyltransferase beta-subunit homologue is essential in Cryptococcus neoformans. Microbiology 150, 1925–1935.CrossRef PubMed
    Watanabe, N.A., Miyazaki, M., Horii, T., Sagane, K., Tsukahara, K., and Hata, K. 2012. E1210, a new broad-spectrum antifungal, suppresses Candida albicans hyphal growth through inhibition of glycosylphosphatidylinositol biosynthesis. Antimicrob. Agents Chemother. 56, 960–971.PubMedCentral CrossRef PubMed
    Young, E., Zheng, Z.Y., Wilkins, A.D., Jeong, H.T., Li, M., Lichtarge, O., and Chang, E.C. 2014. Regulation of Ras localization and cell transformation by evolutionarily conserved palmitoyltransferases. Mol. Cell. Biol. 34, 374–385.PubMedCentral CrossRef PubMed
    Zhang, M.M., Wu, P.Y., Kelly, F.D., Nurse, P., and Hang, H.C. 2013. Quantitative control of protein S-palmitoylation regulates meiotic entry in fission yeast. PLoS Biol. 11, e1001597.PubMedCentral CrossRef PubMed
  • 作者单位:Felipe H. Santiago-Tirado (1)
    Tamara L. Doering (1)

    1. Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
  • 刊物主题:Microbiology;
  • 出版者:Springer Netherlands
  • ISSN:1976-3794
文摘
Lipid modification of proteins is a widespread, essential process whereby fatty acids, cholesterol, isoprenoids, phospholipids, or glycosylphospholipids are attached to polypeptides. These hydrophobic groups may affect protein structure, function, localization, and/or stability; as a consequence such modifications play critical regulatory roles in cellular systems. Recent advances in chemical biology and proteomics have allowed the profiling of modified proteins, enabling dissection of the functional consequences of lipid addition. The enzymes that mediate lipid modification are specific for both the lipid and protein substrates, and are conserved from fungi to humans. In this article we review these enzymes, their substrates, and the processes involved in eukaryotic lipid modification of proteins. We further focus on its occurrence in the fungal pathogen Cryptococcus neoformans, highlighting unique features that are both relevant for the biology of the organism and potentially important in the search for new therapies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700