用户名: 密码: 验证码:
Resistance of extremely halophilic archaea to zinc and zinc oxide nanoparticles
详细信息    查看全文
  • 作者:Bhakti B. Salgaonkar ; Deepthi Das ; Judith Maria Bragança
  • 关键词:Halophilic ; Archaea ; Halococcus strain BK6 ; Haloferax strain BBK2 ; Halorubrum strain BS17 ; Haloarcula strain BS2 ; ZnCl2 ; ZnO nanoparticles ; Metal tolerance ; Growth kinetics
  • 刊名:Applied Nanoscience
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:6
  • 期:2
  • 页码:251-258
  • 全文大小:1,081 KB
  • 参考文献:Acosta JA, Jansen B, Kalbitz K, Faz A, Martínez–Martínez S (2011) Salinity increases mobility of heavy metals in soils. Chemosphere 85:1318–1324CrossRef
    Al-Mailem DM, Al-Awadh H, Sorkhoh NA, Eliyas M, Radwan SS (2011) Mercury resistance and volatilization by oil utilizing haloarchaea under hypersaline conditions. Extremophiles 15:39–44CrossRef
    Al-Momani FA, Massadeh AM, Hadady YA (2007) Uptake of zinc and copper by halophilic bacteria isolated from the Dead sea shore, Jordan. Biol Trace Elem Res 115:291–300CrossRef
    Andreini C, Banci L, Bertini I, Rosato A (2006) Zinc through the three domains of life. J Proteome Res 5:3173–3178CrossRef
    Baranyi J, Roberts TA (1994) A dynamic approach to predicting bacterial growth in food. Int J Food Microbiol 23:277–294CrossRef
    Bini E (2010) Archaeal transformation of metals in the environment. FEMS Microbiol Ecol 73:1–16
    Bragança JM, Furtado I (2009) Haloarchaea associated with salt crystals obtained from solar salterns of Goa, India. In: Visual Image, Microbe Library org, American Society for Microbiology
    Bragança JM, Furtado I (2013) Resistance of Halobacterium strain R1 to cadmium during growth in mineral salts medium devoid of growth factors. Asian J Microbiol Biotech Env Sci 15:299–302
    Choudhury R, Srivastava S (2001) Zinc resistance mechanisms in bacteria. Curr Sci 81:768–775
    Das D, Salgaonkar BB, Mani K, Bragança JM (2014) Cadmium resistance in extremely halophilic archaeon Haloferax strain BBK2. Chemosphere 112:385–392CrossRef
    Dedova T, Volobujeva O, Klauson J, Mere A, Krunks M (2007) ZnO nanorods via spray deposition of solutions containing zinc chloride and thiocarbamide. Nanoscale Res Lett 2:391–396CrossRef
    Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84:13–28CrossRef
    Gelabert A, Pokrovsky OS, Viers J, Schott J, Boudou A, Feurtet-Mazel A (2006) Interaction between zinc and freshwater and marine diatom species: Surface complexation and Zn isotope fractionation. Geochim Cosmochim Acta 70:839–857CrossRef
    Green-Ruiz C, Rodriguez-Tirado V, Gomez-Gil B (2008) Cadmium and zinc removal from aqueous solutions by Bacillus jeotgali: pH, salinity and temperature effects. Bioresour Technol 99:3864–3870CrossRef
    Guine V, Spadini L, Sarret G, Muris M, Delolme C, Gaudet JP, Martins JMF (2006) Zinc Sorption to Three Gram-Negative Bacteria: Combined Titration, Modeling, and EXAFS Study. Environ Sci Technol 40:1806–1813CrossRef
    Gunalan S, Sivaraj R, Rajendran V (2012) Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog Nat Sci Mater Int 22:693–700CrossRef
    Kandler O, Konig H (1998) Cell wall polymers in archaea (archaebacteria). Cell Mol Life Sci 54:305–308CrossRef
    Kaur A, Pan M, Meislin M, Facciotti MT, El-Gewely R, Baliga NS (2006) A systems view of haloarchaeal strategies to withstand stress from transition metals. Genome Res 16:841–854CrossRef
    Kottemann M, Kish A, Iloanusi C, Bjork S, Diruggiero J (2005) Physiological responses of the halophilic archaeon Halobacterium sp. strain NRC1 to desiccation and gamma irradiation. Extremophiles 9:219–227CrossRef
    Legat A, Denner EBM, Dornmayr-Pfaffenhuemer M, Pfeiffer P, Knopf B, Claus H, Gruber C, König H, Wanner G, Stan-Lotter H (2013) Properties of Halococcus salifodinae, an isolate from Permian rock salt deposits, compared with Halococci from surface waters. Life 3:244–259CrossRef
    Li M, Pokhrel S, Jin X, Madler L, Damoiseaux R, Hoek EMV (2011) Stability, bioavailability, and bacterial Toxicity of ZnO and Iron-Doped ZnO nanoparticles in aquatic Media. Environ Sci Technol 45:755–761CrossRef
    Lipovsky A, Nitzan Y, Gedanken A, Lubart R (2011) Antifungal activity of ZnO nanoparticles—the role of ROS mediated cell injury. Nanotechnology 22:105101CrossRef
    Ma Y, Galinski EA, Grant WD, Oren A, Ventosa A (2010) Halophiles 2010: life in saline environments. Appl Environ Microbiol 76:6971–6981CrossRef
    Mangold S, Potrykus J, Björn E, Lövgren L, Dopson M (2013) Extreme zinc tolerance in acidophilic microorganisms from the bacterial and archaeal domains. Extremophiles 17:75–85CrossRef
    Mani K, Salgaonkar BB, Bragança JM (2012) Culturable halophilic archaea at the initial and final stages of salt production in a natural solar saltern of Goa, India. Aquat Biosyst 8:15CrossRef
    Monteiro CM, Castro PML, Malcata FX (2011) Biosorption of zinc ions from aqueous solution by the microalga Scenedesmus obliquus. Environ Chem Lett 9:169–176CrossRef
    Nieto JJ, Ventosa A, Ruiz-Berraquero F (1987) Susceptibility of Halobacteria to heavy metals. Appl Environ Microbiol 53:1199–1202
    Paula DP, Gleny A, Martha H, Patricia P, Susana S, Fabrizio Q, Gonzalo R, Pedro S, Diana A, Karem G, Carlos CO (2013) Kinetics of arsenite removal by halobacteria from a highly and Andean Chilean Salar. Aquat Biosyst 9:8CrossRef
    Poli A, Di Donato P, Abbamondi GR, Nicolaus B (2011) Synthesis, production and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by archaea. Archaea 2011:693253. doi:10.​1155/​2011/​693253
    Popescu G, Dumitru L (2009) Biosorption of some heavy metals from media with high salt concentrations by halophilic Archaea. Biotechnol Biotechnol EQ:791–795 (23/2009/SE)
    Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G (2011) Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed Nanotech Biol Med 7:184–192CrossRef
    Salgaonkar BB, Kabilan M, Nair A, Sowmya G, Bragança JM (2012) Interspecific interactions among members of family Halobacteriaceae from natural solar salterns. Probiotics Antimicrob Proteins 4:98–107CrossRef
    Schleifer KH, Steber J, Mayer H (1982) Chemical composition and structure of the cell wall of Halococcus morrhuae. Zbl Bakt Hyg 1 Abt Orig 3:171–178
    Schubert BA, Lowenstein TK, Timofeeff MN, Matthew A, Parker MA (2010) Halophilic Archaea cultured from ancient halite, Death Valley, California. Environ Microbiol 12:440–454CrossRef
    Sinha R, Karan R, Sinha A, Khare SK (2011) Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresour Technol 102:1516–1520CrossRef
    Williams GP, Gnanadesigan M, Ravikumar S (2013) Biosorption and bio-kinetic properties of solar saltern Halobacterial strains for managing Zn2+, As2+ and Cd2+ metals. Geomicrobiol J 30:497–500CrossRef
    Xiong D, Fang T, Yu L, Sima X, Zhu W (2011) Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebra fish: acute toxicity, oxidative stress and oxidative damage. Sci Total Environ 409:1444–1452CrossRef
    You J, Zhang Y, Hu Z (2011) Bacteria and bacteriophage inactivation by silver and zinc oxide nanoparticles. Colloids Surf B Biointerfaces 85:161–167CrossRef
    Zeng J, Wang WX (2009) The importance of cellular phosphorus in controlling the uptake and toxicity of cadmium and zinc in Microcystis aeruginosa, a freshwater cyanobacterium. Environ Toxicol Chem 28:1618–1626CrossRef
    Zhao L, Yang F, Yan X, Huo Z, Zhang G (2012) Heavy metal concentrations in surface sediments and Manila Clams (Ruditapes philippinarum) from the Dalian Coast, China after the Dalian Port Oil Spill. Biol Trace Elem Res 149:241–247CrossRef
    Zhao S, Feng C, Wang D, Liu Y, Shen Z (2013) Salinity increases the mobility of Cd, Cu, Mn, and Pb in the sediments of Yangtze Estuary: relative role of sediments’ properties and metal speciation. Chemosphere 91:977–984CrossRef
  • 作者单位:Bhakti B. Salgaonkar (1)
    Deepthi Das (1)
    Judith Maria Bragança (1)

    1. Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K K Birla, Goa Campus, NH 17B, Zuarinagar, 403 726, Goa, India
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Materials Science
    Nanotechnology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:2190-5517
文摘
Industrialization as well as other anthropogenic activities have resulted in addition of high loads of metal and/or metal nanoparticles to the environment. In this study, the effect of one of the widely used heavy metal, zinc (Zn) and zinc oxide nanoparticles (ZnO NPs) on extremely halophilic archaea was evaluated. One representative member from four genera namely Halococcus, Haloferax, Halorubrum and Haloarcula of the family Halobacteriaceae was taken as the model organism. All the haloarchaeal genera investigated were resistant to both ZnCl2 and ZnO NPs at varying concentrations. Halococcus strain BK6 and Haloferax strain BBK2 showed the highest resistance in complex/minimal medium of up to 2.0/1.0 mM ZnCl2 and 2.0/1.0–0.5 mM ZnO NP. Accumulation of ZnCl2/ZnO NPs was seen as Haloferax strain BBK2 (287.2/549.6 mg g−1) > Halococcus strain BK6 (165.9/388.5 mg g−1) > Haloarcula strain BS2 (93.2/28.5 mg g−1) > Halorubrum strain BS17 (29.9/16.2 mg g−1). Scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM–EDX) analysis revealed that bulk ZnCl2 was sorbed at a higher concentration (21.77 %) on the cell surface of Haloferax strain BBK2 as compared to the ZnO NPs (14.89 %). Keywords Halophilic Archaea Halococcus strain BK6 Haloferax strain BBK2 Halorubrum strain BS17 Haloarcula strain BS2 ZnCl2 ZnO nanoparticles Metal tolerance Growth kinetics

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700